Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Treating peripheral nerve injury (PNI) is a prevalent clinical challenge. The improper dispersion of regenerating axons makes it difficult to develop nerve guidance conduits (NGCs) for treating PNI. The multichannel NGCs, designed to mimic the fascicular structure of nerves, are proposed as an alternative to single hollow lumen NGCs. Hydrogel-based NGCs with microscale multichannels resembling actual nerve fascicles are fabricated using digital light processing as 3D printing. Gelatin methacryloyl (GelMA) and polyethylene glycol diacrylate (PEGDA), which are biodegradable and photocurable, are used as the printing solution. The addition of a food-grade dye to the printing solution can prevent overcuring by adjusting the optical path length of light and regulating the polymerization rate. This work further demonstrates that the addition of dyes can enable high-resolution printing, resulting in the achievement of fine multichannels with a diameter of 200 μm. animal studies using a rat sciatic nerve gap model show that GelMA/PEGDA-based multichannel NGCs can significantly improve peripheral nerve regeneration, as indicated by improved paw sensory recoveries, increased hindlimb gait function, and muscle fiber regeneration. Furthermore, the mechanical properties, pore size, and biodegradation rate of the hydrogel constituting the NGCs successfully demonstrate the feasibility of hydrogel-based multichannel NGCs for accelerating neurologic recoveries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11815286PMC
http://dx.doi.org/10.1016/j.mtbio.2025.101514DOI Listing

Publication Analysis

Top Keywords

peripheral nerve
12
multichannel ngcs
12
hydrogel-based multichannel
8
printing solution
8
nerve
7
ngcs
7
printed biodegradable
4
biodegradable hydrogel-based
4
multichannel
4
multichannel nerve
4

Similar Publications

Painful diabetic neuropathy (PDN), a severe microvascular complication of diabetes, is closely associated with neuroinflammation. This study aimed to investigate the mechanism of circ_0002590 in neuroinflammation associated with PDN.The Schwann cells (HEI193) were treated with high glucose (HG, 150 mM) to simulate the diabetic microenvironment.

View Article and Find Full Text PDF

Background: Breast cancer is one of the most common malignancies worldwide and is often treated with surgery. Post-mastectomy pain syndrome (PMPS) can have disabling consequences. The incidence of PMPS ranges from 20% to 68%.

View Article and Find Full Text PDF

Background: Eating disorders such as Anorexia Nervosa (AN) and Bulimia Nervosa (BN) were previously found to partly entail alterations in stress physiology including salivary cortisol (sC), and salivary alpha amylase (sAA) at rest and basal vagal tone (HF-HRV), compared to individuals without mental disorders or with mixed mental disorders (anxiety and depressive disorders), but corresponding data remain scarce and are not entirely consistent.

Method: HF-HRV, sC and sAA at rest were assessed in a female sample of 58 individuals with AN and 54 individuals with BN before and after psychotherapy and contrasted against measurements from 59 female individuals suffering from mixed disorders and 101female healthy controls.

Results: Values for sC were elevated in AN compared to all other groups, those for HF-HRV were highest in both AN and BN and lowest in mixed mental disorders and no differences were found at rest for sAA.

View Article and Find Full Text PDF

The costoclavicular brachial plexus block has gained relevance as a safe and effective regional anesthesia technique for upper limb orthopedic surgery in adults, but data in pediatric populations remain limited. This study aimed to evaluate the incidence of phrenic nerve palsy associated with CBPB in pediatric patients. We conducted a descriptive observational study in 30 children undergoing upper limb orthopedic surgery.

View Article and Find Full Text PDF

Conductive nanocomposite hydrogels (CNHs) represent a promising tool in neural tissue engineering, offering tailored electroactive microenvironments to address the complex challenges of neural repair. This systematic scoping review, conducted in accordance with PRISMA-ScR guidelines, synthesizes recent advancements in CNH design, functionality, and therapeutic efficacy for central and peripheral nervous system (CNS and PNS) applications. The analysis of 125 studies reveals a growing emphasis on multifunctional materials, with carbon-based nanomaterials (CNTs, graphene derivatives; 36.

View Article and Find Full Text PDF