A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Vernier Effect-Enhanced Temperature Sensing Based on On-Chip Spiral Resonant Cavities. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The optical Vernier effect has been widely studied due to its remarkable effect in improving the sensitivity and resolution of optical sensors. This effect relies on the overlapping envelope of two signals with slightly detuned frequencies. In the application of on-chip optical waveguide resonant cavities with whispering gallery modes, due to the on-chip space limitations, the length of the resonant cavity is restricted, resulting in an increased free spectral range. In the case of a small Vernier effect detuning, the required large Vernier envelope period often exceeds the available wavelength range of the detection system. To address this issue, we propose a novel on-chip waveguide structure to optimize the detection range of the cascaded Vernier effect. The proposed spiral resonant cavity extends the cavity length to 7.50 m within a limited area. The free spectral width (27.46 MHz) is comparable in size to the resonant linewidth (9.41 MHz), shrinking the envelope free spectral width to 371.29 MHz, which greatly facilitates the reading of the Vernier effect. Finally, by connecting two resonant cavities with similar cavity lengths in series and utilizing the Vernier effect, temperature sensing was verified. The results show that compared with a single resonant cavity, the sensitivity was improved by a factor of 14.19. This achievement provides a new direction for the development of wide-range and high-sensitivity Vernier sensing technologies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820483PMC
http://dx.doi.org/10.3390/s25030685DOI Listing

Publication Analysis

Top Keywords

resonant cavities
12
resonant cavity
12
free spectral
12
vernier
8
temperature sensing
8
spiral resonant
8
spectral width
8
resonant
7
cavity
5
vernier effect-enhanced
4

Similar Publications