Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In recent years, the preparation of OPO (1,3-dioleoyl-2-palmitoyltriglyceride)-structured lipids through immobilized lipase catalysis has emerged as a research hotspot in the fields of food and biomedical sciences. OPO structured lipids, renowned for their unique molecular structure and biological functions, find wide applications in infant formula milk powder, functional foods, and nutritional supplements. Lipase-catalyzed reactions, known for their efficiency, high selectivity, and mild conditions, are ideal for the synthesis of OPO structured lipids. Immobilized lipases not only address the issues of poor stability and difficult recovery of free enzymes but also enhance catalytic efficiency and reaction controllability. This review summarizes the latest advancements in the synthesis of OPO structured lipids using immobilized lipases, focusing on immobilization methods, enhancements in enzyme activity and stability, the optimization of reaction conditions, and improvements in product purity and yield. Furthermore, it delves into the reaction mechanisms of enzymatic synthesis of OPO structured lipids, process optimization strategies, and the challenges and broad prospects faced during industrial applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11816798PMC
http://dx.doi.org/10.3390/foods14030475DOI Listing

Publication Analysis

Top Keywords

structured lipids
20
opo structured
16
lipids immobilized
12
synthesis opo
12
immobilized lipases
8
lipids
6
structured
5
opo
5
application progress
4
immobilized
4

Similar Publications

Background: Atherosclerosis, a leading cause of cardiovascular disease (CVD) mortality worldwide, is characterized by dysregulated lipid metabolism and unresolved inflammation. Macrophage-derived foam cell formation and apoptosis contribute to plaque formation and vulnerability. Elevated serum galectin-3 (Gal-3) levels are associated with increased CVD risk, and Gal-3 in plaques is strongly associated with macrophages.

View Article and Find Full Text PDF

Sterols are essential isoprenoid derivatives that contribute to membrane structure and function. In plants, they also serve as precursors to phytohormones and specialized metabolites important for development, defense, and health. Although the sterol biosynthetic pathway is considered well-characterized, we report the discovery of a plant-specific cytochrome -like protein, CB5LP, as a critical component of phytosterol biosynthesis.

View Article and Find Full Text PDF

Alteration in hippocampal mitochondria ultrastructure and cholesterol accumulation linked to mitochondrial dysfunction in the valproic acid rat model of autism spectrum disorders.

Psychopharmacology (Berl)

September 2025

Instituto de Biología Celular y Neurociencias "Prof. De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.

Rationale: Autism spectrum disorders (ASD) are a group of neurodevelopmental and multifactorial conditions with cognitive manifestations. The valproic acid (VPA) rat model is a well-validated model that successfully reproduces the behavioral and neuroanatomical alterations of ASD. Previous studies found atypical brain connectivity and metabolic patterns in VPA animals: local glucose hypermetabolism in the prefrontal cortex, with no metabolic changes in the hippocampus.

View Article and Find Full Text PDF

Natural phytoconstituents such as betanin and curcumin have attracted interest for their significant antioxidant and anti-inflammatory properties. Their therapeutic efficacy is notably constrained by inadequate bioavailability and reduced skin permeability. The current study developed an ethosome-based gel system for the delivery of betanin and curcumin, with the objective of improving transdermal penetration and providing sustained anti-inflammatory effects.

View Article and Find Full Text PDF

Post-translational modifications (PTMs) are chemical modifications that occur on specific amino acid residues after protein biosynthesis, which can affect protein function by altering protein structure, localization and activity, thus expanding protein diversity. Extensive research has demonstrated that PTMs can regulate various metabolic processes, such as glucose and lipid metabolism, as well as immune modulation in tumor cells, thereby promoting tumor initiation, progression, and metastasis. In this article, we systematically review a class of emerging PTMs whose roles in tumor metabolism and immune regulation have gradually been recognized in recent years, including six types: lactylation, palmitoylation, SUMOylation, succinylation, crotonylation, and myristoylation.

View Article and Find Full Text PDF