98%
921
2 minutes
20
Chronic diseases such as diabetes and cancer are the leading causes of mortality worldwide. Receptors for Advanced Glycation End products (RAGEs) are ubiquitous factors that catalyse Advanced Glycation End products (AGEs), proteins, and lipids that become glycated from sugar ingestion. RAGEs are cell surface receptor proteins and play a broad role in mediating the effects of AGEs on cells, contributing to modifying biological macromolecules like proteins and lipids, which can cause Reactive Oxygen Species (ROS) generation, inflammation, and cancer. We targeted RAGE inhibition analysis and screening of United States Food and Drug Administration (FDA) libraries through molecular docking studies that identified the four most suitable FDA compounds: Zytiga, Paliperidone, Targretin, and Irinotecan. We compared them with the control substrate, Carboxymethyllysine, which showed good binding interaction through hydrogen bonding, hydrophobic interactions, and π-stacking at active site residues of the target protein. Following a 100 ns simulation run, the docked complex revealed that the Root Mean Square Deviation (RMSD) values of two drugs, Irinotecan (1.3 ± 0.2 nm) and Paliperidone (1.2 ± 0.3 nm), were relatively stable. Subsequently, the Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) determined that the Paliperidone molecule had a high negative energy of -13.49 kcal/mol, and the Absorption, Distribution, Metabolism, and Excretion (ADME) properties were in control for use in the mentioned cases. We extended this with many in vitro studies, including an immunoblotting assay, which revealed that RAGEs with High Mobility Group Box 1 (HMGB1) showed higher expression, while RAGEs with Paliperidone showed lower expressions. Furthermore, cell proliferation assay and Apoptosis assay (Annexin-V/PI staining) results revealed that Paliperidone was an effective anti-glycation and anti-apoptotic drug-however, more extensive in vivo studies are needed before its use.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11817405 | PMC |
http://dx.doi.org/10.3390/ijms26031060 | DOI Listing |
BMC Oral Health
September 2025
Department of Oral Medicine and Periodontology, Ain Shams University, Cairo, Egypt.
Background: Periodontitis, a chronic inflammatory disease of tooth-supporting tissues, shows significant associations with systemic conditions like type 2 diabetes mellitus (T2DM) and obesity. These metabolic disorders share chronic inflammatory pathways that may influence periodontal disease severity. This study investigated these relationships using advanced quantifiable metrics - periodontal epithelial surface area (PESA) and periodontal inflammatory surface area (PISA).
View Article and Find Full Text PDFOsteoporos Int
September 2025
Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400037, China.
Diabetes and osteoporosis are common chronic diseases worldwide, and there is a complex pathological relationship between the two. Due to hyperglycemia, insulin resistance, and accumulation of advanced glycation end products (AGEs), diabetic patients often show a higher risk of fractures. At the same time, chronic low-grade inflammation and oxidative stress caused by diabetes also play an important role in the occurrence of osteoporosis, disrupting the balance of bone remodeling.
View Article and Find Full Text PDFNephrol Dial Transplant
September 2025
Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
Background: We investigated circulating protein profiles and molecular pathways among various chronic kidney disease (CKD) etiologies to study its underlying molecular heterogeneity.
Methods: We conducted a proteomic biomarker analysis in the DAPA-CKD trial recruiting adults with and without type 2 diabetes with an eGFR of 25 to 75 mL/min/1.73m2 and a UACR of 200 to 5000 mg/g.
Nan Fang Yi Ke Da Xue Xue Bao
August 2025
Department of Nephrology, First Affiliated Hospital of Guilin Medical University, Guilin 541000, China.
Objectives: To investigate the effect of serum advanced glycation endproducts (AGEs) on stenosis after first autologous arteriovenous fistula (AVF) in patients with end-stage renal disease (ESRD).
Methods: Patients with ESRD undergoing standard native arteriovenous fistula (AVF) for the first time in the Department of Nephrology, Affiliated Hospital of Guilin Medical University from February to June 2022 were prospectively enrolled. The preoperative general data, clinical examination results and ultrasound data of the operated limbs were collected.
Toxicon
September 2025
Department of Pathology, College of Medicine, King Khalid University, P.O. 641, Abha, 61421, Saudi Arabia; Department of Forensic Medicine and Clinical Toxicology, Mansoura University, Egypt.
Titanium dioxide nanoparticles (TiO-NPs) are used in the production of various industrial and commercial products and reported to cause neurotoxicity in Sprague Dawley rats. Fortunellin (FRN) is a potent flavonoid with diverse biological properties. This research experiment was performed to explore the protective role FRN against TiO-NPs induced brain damage.
View Article and Find Full Text PDF