Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Amyotrophic lateral sclerosis (ALS) has an interactive, multifactorial etiology that makes treatment success elusive. This study evaluates how regulatory dynamics impact disease progression and treatment. Computational models of wild-type (WT) and transgenic SOD1-G93A mouse physiology dynamics were built using the first-principles-based first-order feedback framework of dynamic meta-analysis with parameter optimization. Two in silico models were developed: a WT mouse model to simulate normal homeostasis and a SOD1-G93A ALS model to simulate ALS pathology dynamics and their response to in silico treatments. The model simulates functional molecular mechanisms for apoptosis, metal chelation, energetics, excitotoxicity, inflammation, oxidative stress, and proteomics using curated data from published SOD1-G93A mouse experiments. Temporal disease progression measures (rotarod, grip strength, body weight) were used for validation. Results illustrate that untreated SOD1-G93A ALS dynamics cannot maintain homeostasis due to a mathematical oscillating instability as determined by eigenvalue analysis. The onset and magnitude of homeostatic instability corresponded to disease onset and progression. Oscillations were associated with high feedback gain due to hypervigilant regulation. Multiple combination treatments stabilized the SOD1-G93A ALS mouse dynamics to near-normal WT homeostasis. However, treatment timing and effect size were critical to stabilization corresponding to therapeutic success. The dynamics-based approach redefines therapeutic strategies by emphasizing the restoration of homeostasis through precisely timed and stabilizing combination therapies, presenting a promising framework for application to other multifactorial neurodegenerative diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11817447PMC
http://dx.doi.org/10.3390/ijms26030872DOI Listing

Publication Analysis

Top Keywords

sod1-g93a als
12
amyotrophic lateral
8
lateral sclerosis
8
disease progression
8
sod1-g93a mouse
8
model simulate
8
als
5
dynamics
5
sod1-g93a
5
restoring homeostasis
4

Similar Publications

To uncover molecular determinants of motor neuron degeneration and selective vulnerability in amyotrophic lateral sclerosis (ALS), we generated longitudinal single-nucleus transcriptomes and chromatin accessibility profiles of spinal motor neurons from the SOD1-G93A ALS mouse model. Vulnerable alpha motor neurons showed thousands of molecular changes, marking a transition into a novel cell state we named 'disease-associated motor neurons' (DAMNs). We identified transcription factor regulatory networks that govern how healthy cells transition into DAMNs as well as those linked to vulnerable and resistant motor neuron subtypes.

View Article and Find Full Text PDF

Background And Purpose: Patients with amyotrophic lateral sclerosis (ALS) are prescribed many medications for symptomatic relief. However, how potential alterations to the blood-brain barrier (BBB) affect the brain exposure of drugs in ALS remains under-investigated.

Experimental Approach: We used high-dimensional proteomic analysis, cellular metabolism, and mitochondrial functional assays to characterise isolated brain microvascular endothelial cells (BMECs) from wildtype and SOD1 transgenic mice, a mouse model of familial ALS, at a late-symptomatic age (P115-120), together with a transcardiac brain perfusion technique to assess BBB function in situ.

View Article and Find Full Text PDF

Distinct amyloid fibril structures formed by ALS-causing SOD1 mutants G93A and D101N.

EMBO Rep

August 2025

Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, 430072, Wuhan, China.

Two hundred eight genetic mutations in SOD1 have been linked to amyotrophic lateral sclerosis (ALS). Of these, the G93A and D101N variants maintain much of their physiological function, closely resembling that of wild-type SOD1, and the SOD1-G93A transgenic mouse is the most extensively used mouse line in the study of ALS. In this study, we report two cryo-EM structures of amyloid fibrils formed by G93A and D101N mutants of SOD1 protein.

View Article and Find Full Text PDF

Nuclear pore complex dysfunction drives TDP-43 pathology in ALS.

Redox Biol

August 2025

Metabolic Pathophysiology Research Group, Dept of Experimental Medicine, University of Lleida-IRBLleida, Avda Rovira Roure, 80 E25196, Lleida, Spain. Electronic address:

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive motor neuron degeneration and pathological aggregation of TDP-43. While protein misfolding and impaired autophagy are established features, accumulating evidence highlights the nuclear pore complex (NPC)as a vulnerable, redox-sensitive hub in ALS pathogenesis. Here, we show that selective loss of NPC components, particularly the scaffold proteins NUP107 and NUP93, and FG-repeat-containing components-is a consistent finding across ALS postmortem spinal cord, SOD1^G93A and TDP-43 mutant mouse models, and human cell systems.

View Article and Find Full Text PDF

Aging is a major risk factor in amyotrophic lateral sclerosis (ALS) and other adult-onset neurodegenerative disorders. Whereas young neurons are capable of buffering disease-causing stresses, mature neurons lose this ability and degenerate over time. We hypothesized that the resilience of young motor neurons could be restored by reexpression of the embryonic motor neuron selector transcription factors ISL1 and LHX3.

View Article and Find Full Text PDF