Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Aging is a major risk factor in amyotrophic lateral sclerosis (ALS) and other adult-onset neurodegenerative disorders. Whereas young neurons are capable of buffering disease-causing stresses, mature neurons lose this ability and degenerate over time. We hypothesized that the resilience of young motor neurons could be restored by reexpression of the embryonic motor neuron selector transcription factors ISL1 and LHX3. We found that viral reexpression of ISL1 and LHX3 selectively in postnatal motor neurons reactivates aspects of their youthful gene expression program and alleviates key disease-relevant phenotypes in the SOD1 mouse model of ALS. Our results suggest that redeployment of lineage-specific neuronal selector transcription factors can be an effective strategy to attenuate age-dependent phenotypes in neurodegenerative disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41593-025-02033-x | DOI Listing |