"Self-Catalysis" Acceleration of Carrier Transport in One-Dimensional Covalent Organic Frameworks with Mortise-Tenon Stacking.

Angew Chem Int Ed Engl

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Covalent Organic Frameworks (COFs) are promising in the field of photonic energy conversion. However, most efforts have been concentrated on the design of ligand geometric structures and chemical bonding relationships, while understanding the impact of stacking methods on photonic energy conversion remains a significant challenge. In this work, four COFs (1D-COF, 1D-MeCOF, 1D-tBuCOF and 2D-COF) with the same main-chain structure but different stacking methods are designed and synthesized, using photocatalytic hydrogen evolution as a model reaction. Mortise-tenon stacked 1D-MeCOF exhibits far superior photocatalytic hydrogen evolution performance to other stacking methods, and it maintains high efficiency and stability in natural seawater systems. Extensive characterization demonstrates that such a unique mortise-tenon stacking structure of 1D-MeCOF inhibits interchain slippage, enhances π-stacking, and maximizing light absorption capabilities. Furthermore, unidirectional carrier transport characteristics of one-dimensional structure can generate a strong photo-induced self-built electric field, which acts as "self-catalysis" to accelerate carrier transport. This work provides an effective design strategy and mechanistic insights on the stacking engineering of photonic energy conversion materials.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202501614DOI Listing

Publication Analysis

Top Keywords

carrier transport
12
photonic energy
12
energy conversion
12
stacking methods
12
covalent organic
8
organic frameworks
8
mortise-tenon stacking
8
photocatalytic hydrogen
8
hydrogen evolution
8
stacking
6

Similar Publications

In this study, we analyze InO thin-film transistors (InO-TFT) using synchrotron-based hard X-ray photoelectron spectroscopy (HAXPES) in conditions. A bottom-gate InO-TFT with a high- AlO gate dielectric, grown on thermally oxidized silicon (SiO/p-Si), was examined while operating at varying and . The results reveal that the In 3d core level binding energy varies along the horizontal channel length, driven by the potential gradient induced by .

View Article and Find Full Text PDF

Beyond Hemoglobin: A Review of Hemocyanin and the Biology of Purple Blood.

Zhongguo Ying Yong Sheng Li Xue Za Zhi

September 2025

PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur - Agra - Delhi, NH#2, Bhauti, Kanpur, Uttar Pradesh, India.

Hemocyanin is dissolved freely in hemolymph, the invertebrate blood substitute, in contrast to haemoglobin, which is encased in red blood cells. When oxygenated, this pigment gives mollusc and arthropod blood its characteristic blue or purple hue. This review article delves into the fascinating biology of hemocyanin, the copper-based oxygen-carrying protein responsible for "purple blood" in many invertebrates, contrasting its characteristics with the more familiar iron-based hemoglobin.

View Article and Find Full Text PDF

Dried blood spots (DBS) have emerged as a promising complement, and in some settings, an alternative, to urine for anabolic androgenic steroid (AAS) testing, offering advantages such as minimal invasiveness, simplified storage, and transportation. This study evaluated two DBS collection devices-cellulose-based Capitainer-B50 and polymer-based Tasso-M20-and compared results with traditional urine analysis. Ten self-reported AAS users were recruited and provided matched urine and DBS samples.

View Article and Find Full Text PDF

Heterojunctions have garnered significant attention in the field of photocatalysis due to their exceptional ability to facilitate the separation of photogenerated charge carriers and their high efficiency in hydrogen reaction. However, their overall photocatalytic performance is often constrained by electron transport rates and suboptimal hydrogen adsorption/desorption kinetics. To address these challenges, this study develops a g-CN/MoS@MoC dual-effect synergistic solid-state Z-type heterojunction, synthesized through the in-situ sulfurization of MoC combined with ultrasonic self-assembly technique.

View Article and Find Full Text PDF

Rational design of Pt-integrated SnNbO/BiMoO monolayer S-scheme heterojunction for efficient ethylene removal toward fresh produce preservation.

J Colloid Interface Sci

September 2025

Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, PR China. Electronic address:

Effective removal of ethylene (CH) during fruit and vegetables storage and transport remains a critical challenge for post-harvest preservation. Although S-scheme heterojunctions can improve charge separation and redox capacity for ethylene degradation, their efficiency is still restricted by limited carrier transfer and sluggish oxygen activation. Here, we rationally designed a novel 2D/2D SnNbO/BiMoO monolayer S-scheme heterojunction integrated with Pt co-catalyst to address these limitations.

View Article and Find Full Text PDF