Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In this study, sulfur was introduced into the graphene oxide-based aerogel system based on the theory of bridging effect, and an oxygen-sulfur synergistic system was established to realize the dual-mechanism selective adsorption to low-concentration Cu(II) with slit structure and targeted binding sites. Based on the difference of chemical properties between organic acids and surfactants, the surface of graphene oxide (GO) was functionalized to realize the regulation of the order of its lamellar structure and the construction of carbon defects. On this basis, sulfur source modified GO-based aerogel was created to accomplish selective adsorption to low-concentration Cu(II) by combining the self-accumulation of montmorillonite and GO with the cross-linking mechanism of Ca(II) and sodium alginate. Based on the density functional theory, the formation process of radicals on the material's surface both prior to and following the adsorption to Cu(II) was simulated, and the effective improvement on the catalytic ability of the material after loading Cu(II) was verified. This means that using Cu(II) saturated adsorbent as a photocatalyst to degrade organic pollutants, is a promising reuse strategy for hazardous waste. The above research provides a new research idea for the subsequent removal of low-concentration metal ions and the potential application of hazardous wastes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2025.137506 | DOI Listing |