Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Platinum (Pt) is a state-of-the-art electrocatalyst for green hydrogen production in alkaline electrolytes. The delicate design and fabrication of two-dimensional (2D) Pt nanocatalysts can significantly enhance atomic utilization efficiency, while further improving intrinsic catalytic performance by modulating the density of surface active sites. However, the high surface energy and morphology complexity of 2D nanostructures often result in poor structural stability under the working conditions. Here, we report the synthesis of a 2D ring-on-sheet nanoheterostructure featuring abundant low-coordination Pt sites in which a defect-rich Pt nanoring is stabilized by an ultrathin 2D rhodium (Rh) support. The Rh@Pt nanoring exhibits remarkably enhanced activity and stability in an electrocatalytic hydrogen evolution reaction in alkaline media compared to defect-free Rh@Pt core-shell nanoplates and commercial Pt/C. This work provides new insights for the design and synthesis of 2D nanoheterostructures with abundant surface active sites for efficient and durable electrocatalysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.4c05833 | DOI Listing |