98%
921
2 minutes
20
The National Institute of Drug Abuse convened a panel of scientists with expertise in substance use disorders (SUD) and genetic methodologies primarily to determine the feasibility of performing whole genome sequencing utilizing existing pedigree collections with a high density of SUD and psychiatric disorders. A major focus was on determining if there had been any successes in identifying genetic variants for complex traits in family-based designs. Such information could provide assurance that whole genome sequencing might provide significant pay-offs particularly in the pursuit of rare variants and copy number variants. An important goal was to discuss and evaluate optimal strategies for studying genetic variants in human samples. Specific topics were (a) to consider whether a smaller number of cases typically available in family studies versus the larger number available in biobanks can reveal unique information; (b) to identify potential gaps in information available in biobank data that might be supplemented with family data; (c) to consider the optimal SUD phenotypic definitions (e.g., quantity of use, problem-oriented) and data collection instruments (self-report or clinician administered) that are both practical and efficient to collect, and likely to provide important insights concerning prevention, intervention, and medication development. Conclusions reached by the panel included optimism about the successes that have occurred in the existing family studies ascertained to include densely affected pedigrees. Evaluation of methodologies led, overall, to a panel consensus that steps should be taken to utilize biobank collection in conjunction with family-based investigations for optimal variant discovery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11814537 | PMC |
http://dx.doi.org/10.1111/gbb.70017 | DOI Listing |
J Appl Microbiol
September 2025
Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed-to-be-University), Pillaiyarkuppam, Pondicherry - 607 402, India.
Aim: To investigate the phenotypic and genomic features of three multidrug-resistant (MDR) clinical mucoid and non-mucoid uropathogenic Escherichia coli (UPEC) strains to understand their antimicrobial resistance, biofilm formation, and virulence in urinary tract infections (UTIs).
Methods And Results: The UPEC strains A5, A10, and A15 were isolated from two UTI patients. Phenotypic assays included colony morphology, antibiotic susceptibility, motility, and biofilm formation.
J Ind Microbiol Biotechnol
September 2025
Department of Biochemistry University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Glycocins are a growing family of ribosomally synthesized and posttranslationally modified peptides (RiPPs) that are O- and/or S-glycosylated. Using a sequence similarity network of putative glycosyltransferases, the thg biosynthetic gene cluster was identified in the genome of Thermoanaerobacterium thermosaccharolyticum. Heterologous expression in Escherichia coli showed that the glycosyltransferase (ThgS) encoded in the biosynthetic gene cluster (BGC) adds N-acetyl-glucosamine (GlcNAc) to Ser and Cys residues of ThgA.
View Article and Find Full Text PDFInt Microbiol
September 2025
Department of Microbiology, The University of Burdwan, Bardhaman, West Bengal, 713104, India.
Biofilm formation and other virulence phenotypes under quorum sensing regulation play a vital role in the pathogenicity of Aeromonas hydrophila, triggering the emergence of multi-drug resistance (MDR) which increases fish mortality, environmental issues, and economic loss in aquaculture, necessitating the discovery of novel drugs to bypass standard antibiotics. Here, quorum quenching (QQ) may be a sustainable anti-virulent approach. β-Lactamase enzyme obtained from Chromohalobacter sp.
View Article and Find Full Text PDFFunct Integr Genomics
September 2025
Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Zhengzhou, China.
In this study, a comprehensive genome-wide identification and analysis of the aldo-keto reductase (AKR) gene family was performed to explore the role of Gossypium hirsutumAKR40 under salt stress in cotton. A total of 249 AKR genes were identified with uneven distribution on the chromosomes in four cotton species. The diversity and evolutionary relationship of the cotton AKR gene family was identified using physio-chemical analysis, phylogenetic tree construction, conserved motif analysis, chromosomal localization, prediction of cis-acting elements, and calculation of evolutionary selection pressure under 300 mM NaCl stress.
View Article and Find Full Text PDFArch Microbiol
September 2025
College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
Klebsiella oxytoca is a N-fixing bacterium whose nif (nitrogen fixation) gene expression is controlled by the two antagonistic regulatory proteins NifA and NifL encoded by the nifLA operon. NifA is a transcriptional activator, while NifL inhibits the transcriptional activity of NifA. In order to develop an improved K.
View Article and Find Full Text PDF