A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Radiomics integration based on intratumoral and peritumoral computed tomography improves the diagnostic efficiency of invasiveness in patients with pure ground-glass nodules: a machine learning, cross-sectional, bicentric study. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Radiomics has shown promise in the diagnosis and prognosis of lung cancer. Here, we investigated the performance of computed tomography-based radiomic features, extracted from gross tumor volume (GTV), peritumoral volume (PTV), and GTV + PTV (GPTV), for predicting the pathological invasiveness of pure ground-glass nodules present in lung adenocarcinoma.

Methods: This was a retrospective, cross-sectional, bicentric study with data collected from January 1, 2018, to June 1, 2022. We divided the dataset into a training cohort (n = 88) from one center and an external validation cohort (n = 59) from another center. Radiomic signatures (rad-scores) were obtained after features were selected through correlation and least absolute shrinkage and selection operator analysis. Three machine learning models, a support vector machine model, a random forest model, and a generalized linear model, were then applied to build radiomic models.

Results: Invasive adenocarcinoma had a higher rad-score (P<0.001) in the GTV and GPTV. The area under the curves (AUC) of GTV, PTV, and GPTV were 0.839, 0.809, and 0.855 in the training cohort and 0.755, 0.777, and 0.801 in the external validation cohort, respectively. The GPTV model had higher AUCs for predicting pathological invasiveness. The random forest model had the best validity and fit for the proposed machine learning approach, suggesting that it may be the most appropriate model.

Conclusions: GPTV had the highest diagnostic efficiency for predicting pathological invasiveness in patients with pure ground-grass nodules, and the random forest model outperformed other predictive models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11816996PMC
http://dx.doi.org/10.1186/s13019-024-03289-3DOI Listing

Publication Analysis

Top Keywords

pure ground-glass
8
ground-glass nodules
8
machine learning
8
cross-sectional bicentric
8
bicentric study
8
radiomics integration
4
integration based
4
based intratumoral
4
intratumoral peritumoral
4
peritumoral computed
4

Similar Publications