Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Although offering the best chance of potential cure for patients with localized perihilar cholangiocarcinoma (pCCA), resection has been associated with high morbidity and sometimes poor long-term outcomes due to recurrence. We sought to develop a predictive model to identify individuals at high risk for very early recurrence (VER) after curative-intent surgery for pCCA.

Methods: Patients who underwent curative-intent surgery for pCCA between 2000-2023 were identified from a multi-institutional database. An eXtreme Gradient Boosting (XGBoost) model was developed to estimate the risk of VER, defined as recurrence within 6 months after resection. The relative importance of clinicopathologic factors was determined using SHapley Additive exPlanations (SHAP) values.

Results: Among 434 patients undergoing curative-intent resection for pCCA, 65 (15.0%) patients developed VER. Median overall survival (OS) among patients with and without VER was 8.4 [interquartile range (IQR) 6.6-11.3] versus 38.5 (IQR 31.9-45.7) months (P<0.001). An XGBoost model was able to stratify patients relative to the risk of VER [low-risk: 6-month recurrence-free survival (RFS) 94.6% intermediate-risk: 6-month RFS 88.3% high-risk: 6-month RFS 40.0%; P<0.001]. Similarly, 3-year OS incrementally worsened based on VER risk (low-risk: 75.3% intermediate-risk: 19.5% high-risk: 4.6%; P<0.001). The SHAP algorithm identified age, preoperative carbohydrate antigen 19-9 (CA19-9) levels, tumor size and differentiation/grade, as well as lymph node metastasis as the five most important predictors of VER. The predictive accuracy of the model was good in the training [c-index: 0.74, 95% confidence interval (CI): 0.67-0.81] and internal validation (c-index: 0.77, 95% CI: 0.71-0.83) cohorts. An easy-to-use risk calculator for VER was developed and made available online at: https://junkawashima.shinyapps.io/VER_hilar/.

Conclusions: A novel, machine learning based model was able to predict accurately the chance of VER after curative-intent resection of pCCA. In turn, the tool may help surgeons in the selection of patients likely to benefit the most from resection, as well as counsel individuals about the anticipated risk of recurrence in the early post-operative period.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806131PMC
http://dx.doi.org/10.21037/hbsn-24-385DOI Listing

Publication Analysis

Top Keywords

predictive model
8
early recurrence
8
perihilar cholangiocarcinoma
8
curative-intent surgery
8
patients
6
model early
4
recurrence
4
recurrence patients
4
patients perihilar
4
cholangiocarcinoma machine
4

Similar Publications

Driven by eutrophication and global warming, the occurrence and frequency of harmful cyanobacteria blooms (CyanoHABs) are increasing worldwide, posing a serious threat to human health and biodiversity. Early warning enables precautional control measures of CyanoHABs within water bodies and in water works, and it becomes operational with high frequency in situ data (HFISD) of water quality and forecasting models by machine learning (ML). However, the acceptance of early warning systems by end-users relies significantly on the interpretability and generalizability of underlying models, and their operability.

View Article and Find Full Text PDF

Integrating opinion dynamics and differential game modeling for sustainable groundwater management.

Water Res

September 2025

College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China. Electronic address:

Groundwater overextraction presents persistent challenges due to strategic interdependence among decentralized users. While game-theoretic models have advanced the analysis of individual incentives and collective outcomes, most frameworks assume fully rational agents and neglect the role of cognitive and social factors. This study proposes a coupled model that integrates opinion dynamics with a differential game of groundwater extraction, capturing the interaction between institutional authority and evolving stakeholder preferences.

View Article and Find Full Text PDF

Study Objective: Accurately predicting which Emergency Department (ED) patients are at high risk of leaving without being seen (LWBS) could enable targeted interventions aimed at reducing LWBS rates. Machine Learning (ML) models that dynamically update these risk predictions as patients experience more time waiting were developed and validated, in order to improve the prediction accuracy and correctly identify more patients who LWBS.

Methods: The study was deemed quality improvement by the institutional review board, and collected all patient visits to the ED of a large academic medical campus over 24 months.

View Article and Find Full Text PDF

Background: In-hospital cardiac arrest (IHCA) remains a public health conundrum with high morbidity and mortality rates. While early identification of high-risk patients could enable preventive interventions and improve survival, evidence on the effectiveness of current prediction methods remains inconclusive. Limited research exists on patients' prearrest pathophysiological status and predictive and prognostic factors of IHCA, highlighting the need for a comprehensive synthesis of predictive methodologies.

View Article and Find Full Text PDF

Purpose: In Armenia, a lower-middle-income country, cancer causes 21% of all deaths, with over half of cases diagnosed at advanced stages. Without universal health insurance, patients rely on out-of-pocket payments or black-market channels for costly immunotherapies, underscoring the need for real-world data to inform equitable policy reforms.

Methods: We conducted a multicenter, retrospective cohort study of patients who received at least one dose of an immune checkpoint inhibitor (ICI) between January 2017 and December 2023 across six Armenian oncology centers.

View Article and Find Full Text PDF