98%
921
2 minutes
20
Electrolyte engineering to enhance the cathode-electrolyte interface stability is widely recognized as a promising strategy for achieving high-voltage lithium-ion batteries, which are currently hindered by the meta-stable surface of lithium-rich layered oxides. Despite significant progress in electrolyte development, clear design guidelines for high-voltage electrolytes remain lacking, making solvent selection unpredictable. Here, a dual-descriptor tailoring concept based on Mulliken charge (adsorption) and Laplacian bond order (antioxidation) to identify ideal solvent molecules for high-voltage electrolytes is proposed. This concept stabilizes meta-stable transition metal atoms in surface tetrahedral interstices through interactions between bottom solvent molecules and cathode dangling bonds. Acetonitrile (AN) is eventually selected as a promising bottom solvent that interacts strongly with unstable surface bonds, improving interfacial stability. Consequently, the prepared 0.6 Ah graphite||LCO pouch cell using AN-based electrolyte maintained a remarkable 80% capacity retention after 900 cycles with an average Coulombic efficiency of 99.92% at high cut-off voltage. This work revisits the interfacial stability mechanism across different electrolyte classes, where strong solvent adsorption mitigates the instability of the meta-stable Co spin state, reduces surface band overlap, and alleviates the instability of lattice oxygen at the interface. This dual-descriptor-guided design opens a new avenue for high-voltage Li-ion batteries is believed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202417076 | DOI Listing |
Adv Mater
March 2025
School of Electrical and Electronic Engineering, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
Electrolyte engineering to enhance the cathode-electrolyte interface stability is widely recognized as a promising strategy for achieving high-voltage lithium-ion batteries, which are currently hindered by the meta-stable surface of lithium-rich layered oxides. Despite significant progress in electrolyte development, clear design guidelines for high-voltage electrolytes remain lacking, making solvent selection unpredictable. Here, a dual-descriptor tailoring concept based on Mulliken charge (adsorption) and Laplacian bond order (antioxidation) to identify ideal solvent molecules for high-voltage electrolytes is proposed.
View Article and Find Full Text PDFJ Colloid Interface Sci
October 2021
Physical and Materials Division, CSIR-National Chemical Laboratory, Pune 411 008, India; Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Postal Staff College area, Gaziabad 201 002, Uttar Pradesh, India. Electronic address:
Efficient reduction of nitrogen to ammonia at a minimal cost would require a recherche catalyst tailored by assimilating the inherent electronic and reactive nature of Single Atom Catalysts (SACs) on heteroatom doped-graphene. A full-scale DFT study accounting for disparate descriptions of atomic orbitals and representation of support, has been carried out to identify the most active and recyclable SAC/B-graphene composite as catalyst for Nitrogen Reduction Reaction (NRR). Dual and Multiphilic descriptors derived reactivity pattern of six different metal SACs V, Fe, Ni, Ru, W and Re on periodic and non-periodic paradigms of pristine and BN-pair doped graphene supports, align with the calculated chemisorption efficacy and activation of N.
View Article and Find Full Text PDF