98%
921
2 minutes
20
Background And Objective: Conventional core needle biopsy for prostate cancer diagnosis can lead to diagnostic uncertainty and complications, prompting exploration of alternative risk assessment approaches that use clinical and imaging features. Our aim was to evaluate the effectiveness of machine learning (ML) models in reducing unnecessary biopsies.
Methods: We conducted a retrospective analysis of data for 1884 patients across two academic centers who underwent prostate magnetic resonance imaging and biopsy between 2016 and 2020 or 2004 and 2011. Twelve ML models were assessed for prediction of clinically significant prostate cancer (csPCa; Gleason grade group ≥2) using combinations of clinical features, including patient age, prostate-specific antigen level and density, Prostate Imaging-Reporting and Data System/Likert score, lesion volume, and gland volume. The models were trained and validated using a tenfold split for intrasite, intersite, and combined-site data sets. Model effectiveness was evaluated using the area under the receiver operating characteristic curve and decision curve analysis.
Key Findings And Limitations: The best-performing ML model would reduce the number of biopsies by 13.07% at a false-negative rate of 1.91%. Performance was consistent across sites, although the study is limited by the small number of centers and the absence of specific clinical data.
Conclusions And Clinical Implications: ML-enhanced clinical models provide an effective and generalizable approach for prediction of csPCa using standard clinical data. These models allow personalized risk assessment and follow-up, support clinical decision-making, and improve workflow efficiency.
Patient Summary: Models that are enhanced by machine learning can predict the severity of prostate cancer and help doctors in tailoring treatments for individual patients. This approach can simplify health care decisions and improve clinical efficiency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12332026 | PMC |
http://dx.doi.org/10.1016/j.euo.2025.01.005 | DOI Listing |
Int J Surg
September 2025
Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, People's Republic of China.
Mol Divers
September 2025
Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh, 492001, India.
Traditional drug discovery methods like high-throughput screening and molecular docking are slow and costly. This study introduces a machine learning framework to predict bioactivity (pIC₅₀) and identify key molecular properties and structural features for targeting Trypanothione reductase (TR), Protein kinase C theta (PKC-θ), and Cannabinoid receptor 1 (CB1) using data from the ChEMBL database. Molecular fingerprints, generated via PaDEL-Descriptor and RDKit, encoded structural features as binary vectors.
View Article and Find Full Text PDFMol Divers
September 2025
Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China.
Drug absorption significantly influences pharmacokinetics. Accurately predicting human oral bioavailability (HOB) is essential for optimizing drug candidates and improving clinical success rates. The traditional method based on experiment is a common way to obtain HOB, but the experimental method is time-consuming and costly.
View Article and Find Full Text PDFExp Brain Res
September 2025
School of Information Science and Technology, Yunnan Normal University, Kunming, 650500, China.
This study explores how differences in colors presented separately to each eye (binocular color differences) can be identified through EEG signals, a method of recording electrical activity from the brain. Four distinct levels of green-red color differences, defined in the CIELAB color space with constant luminance and chroma, are investigated in this study. Analysis of Event-Related Potentials (ERPs) revealed a significant decrease in the amplitude of the P300 component as binocular color differences increased, suggesting a measurable brain response to these differences.
View Article and Find Full Text PDFDrugs Aging
September 2025
Dalla Lana School of Public Health, University of Toronto, V1 06, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.
Background And Objectives: Older adults living with dementia are a heterogeneous group, which can make studying optimal medication management challenging. Unsupervised machine learning is a group of computing methods that rely on unlabeled data-that is, where the algorithm itself is discovering patterns without the need for researchers to label the data with a known outcome. These methods may help us to better understand complex prescribing patterns in this population.
View Article and Find Full Text PDF