98%
921
2 minutes
20
In recent years, with the increasing attention from researchers towards medical imaging, deep learning-based image segmentation techniques have become mainstream in the field, requiring large amounts of manually annotated data. Annotating datasets for Intracranial Hemorrhage(ICH) is particularly tedious and costly. Few-shot segmentation holds significant potential for medical imaging. In this work, we designed a novel segmentation model CGNet to leverage a limited dataset for segmenting ICH regions, we propose a Cross Feature Module (CFM) enhances the understanding of lesion details by facilitating interaction between feature information from the query and support sets and Support Guide Query (SGQ) refines segmentation targets by integrating features from support and query sets at different scales, preserving the integrity of target feature information while further enhancing segmentation detail. We first propose transforming the ICH segmentation task into a few-shot learning problem. We evaluated our model using the publicly available BHSD dataset and the private IHSAH dataset. Our approach outperforms current state-of-the-art few-shot segmentation models, outperforming methods of 3% and 1.8% in Dice coefficient scores, respectively, and also exceeds the performance of fully supervised segmentation models with the same amount of data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compmedimag.2025.102505 | DOI Listing |
J Craniofac Surg
September 2025
Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China.
Salivary duct carcinoma (SDC) is a rare high-grade parotid malignancy prone to perineural spread. However, perineural spread of SDC has rarely been reported. The case of a 46-year-old male with SDC spread along the facial nerve (FN) is presented here.
View Article and Find Full Text PDFJ Cataract Refract Surg
July 2025
Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu City, Sichuan Province, China.
Purpose: To develop and validate a multimodal deep-learning model for predicting postoperative vault height and selecting implantable collamer lens (ICL) sizes using Anterior Segment Optical Coherence Tomography (AS-OCT) and Ultrasound Biomicroscope (UBM) images combined with clinical features.
Setting: West China Hospital of Sichuan University, China.
Design: Deep-learning study.
Arq Gastroenterol
September 2025
Universidade Federal de Minas Gerais, Faculdade de Medicina, Departamento de Clínica Médica, Belo Horizonte, MG, Brasil.
Background: Crohn's disease (CD) is a chronic inflammatory disease, with a heterogeneous clinical course, which can affect any segment of the gastrointestinal tract. Data on the natural history of CD in developing countries are rare.
Objective: to delineate the clinical, epidemiological, and longitudinal characteristics of CD patients at a Brazilian referral center.
Am J Physiol Cell Physiol
September 2025
Division of Gastroenterology & Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
Chronic diarrhea is a frequent gastrointestinal complication in both type 1 (T1D) and type 2 diabetes (T2D), although the underlying mechanisms differ: T1D is linked to autonomic neuropathy and disrupted transporter regulation, while T2D is often linked to medications and intestinal inflammation. Using streptozotocin-induced mouse models of T1D and T2D, we observed increased luminal fluid in the small intestine of both. Given the role of Na⁺/H⁺ exchanger 3 (NHE3) in fluid absorption and its loss in most diarrheal diseases, we examined NHE3 expression across intestinal segments.
View Article and Find Full Text PDFBioinformatics
September 2025
Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit GBsC-CSIC, University of Zaragoza, Zaragoza, 50018, Spain.
Motivation: The stability of protein interfaces influences protein dynamics and unfolding cooperativity. Although in some cases the dynamics of proteins can be deduced from their topology, much of the stability of an interface is related to the complementarity of the interacting parts. It is also important to note that proteins that display non-cooperative unfolding cannot be rationally stabilized unless the regions that unfold first are known.
View Article and Find Full Text PDF