98%
921
2 minutes
20
The collective behavior of colloids in microsystems is characterized by precise micro-object control, broadening the applications of cargo manipulation in drug delivery, microfluidics, and nanotechnology. To further investigate this potential, we introduce a cargo-manipulating platform that utilizes micromagnetic patterns and fluid flow rather than conventional fluidic components. This platform, called the flowless micropump, comprises an encapsulating fluid system within a chip, containing both actuation particles (2.8 μm in diameter) and control targets, thereby eliminating external interactions. This platform enables two distinct modes of cargo manipulation: direct control of nonmagnetic cargo (e.g., MCF-7 and THP-1 cells) and indirect manipulation of particles (e.g., polymer particles) through secondary localized fluid flow. Direct manipulation is achieved via coordinated particle collisions, facilitated by an optimized guiding wall with a height of 25 μm. Conversely, indirect manipulation allows for high-speed control and mode change of individual targets. These manipulation events are achieved using two patterned structures: railway-track and connected half-disk (conductor) patterns. By employing a conductor pattern in conjunction with a railway-track pattern, precise and agile control of microcargo (MCF-7 and THP-1 cells and polymer bead clusters) was achieved at frequencies of 1-3 Hz and a magnetic field strength of 10 mT. This study establishes a programmable platform for designing flowless micropumps with diverse functionalities for various experimental purposes. By using colloidal flow and localized fluid flow generated by the shape of magnetic patterns and semi-three-dimensional (3D) structures, this platform holds significant promise for applications in drug screening, cell-cell interaction studies, and organoid-on-chip research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c16099 | DOI Listing |
Int J Gen Med
September 2025
Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, People's Republic of China.
Background: Nodular hidradenoma (NH) is a rare benign adnexal tumor originating from sweat glands, often misdiagnosed due to nonspecific clinical manifestations. Ultrasonography (US) plays a critical role in the diagnosis of skin tumors, yet systematic descriptions of its sonographic features remain limited.
Objective: This study aims to investigate the very-high-frequency (VHF) characteristics of eccrine nodular hidradenoma (ENH) and establish key imaging criteria to differentiate it from other cutaneous/subcutaneous lesions.
Vasc Health Risk Manag
September 2025
Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, Szczecin, 71-210, Poland.
The vascular endothelium is responsible for regulating vascular tone, maintaining fluid homeo-stasis, and preventing platelet aggregation, exhibits regulatory properties in vasorelaxation and vasoconstriction - it produces, among others, nitric oxide and endothelin. The imbalance of vasoactive molecules leads to the loss of their function, known as endothelial dysfunction. Impaired endothelial function is observed in people with metabolic disorders, often preceding the onset of the disease by several years.
View Article and Find Full Text PDFAnn Biomed Eng
September 2025
Department of Mechanical Engineering, Koc University, Rumeli Feneri Campus, Sarıyer, 34450, Istanbul, Turkey.
Purpose: The design and development of ventricular assist devices have heavily relied on computational tools, particularly computational fluid dynamics (CFD), since the early 2000s. However, traditional CFD-based optimization requires costly trial-and-error approaches involving multiple design cycles. This study aims to propose a more efficient VAD design and optimization framework that overcomes these limitations.
View Article and Find Full Text PDFEnviron Monit Assess
September 2025
School of Geological Survey, China University of Geosciences, Wuhan, 430074, China.
Cadmium (Cd) contamination in water poses a critical global challenge. A novel nanocomposite, montmorillonite (Mt)-supported nanoscale zero-valent iron (Mt-nZVI), synthesized by liquid phase reduction, offers a promising method for effectively removing Cd. The material underwent characterization through various techniques, including X-ray diffraction (XRD) and Scanning Electron Microscope(SEM).
View Article and Find Full Text PDFMed Eng Phys
October 2025
Mechanical Engineering Department KVGIT Jaipur, Rajasthan, India.
Triply periodic minimal surfaces have garnered significant interest in the field of biomaterial scaffolds due to their unique structural properties, including a high surface-to-volume (S/V) ratio, tunable permeability, and the potential for enhanced biocompatibility. Bone scaffolds necessitate specific features to effectively support tissue regeneration. This study examines the permeability and active cell proliferation area of advanced Triply Periodic Minimal Surface (TPMS) lattice structures, focusing on a novel lattice design.
View Article and Find Full Text PDF