98%
921
2 minutes
20
Background: India harbors the world's largest cattle population, encompassing over 50 distinct Bos indicus breeds. This rich genetic diversity underscores the inadequacy of a single reference genome to fully capture the genomic landscape of Indian cattle. To comprehensively characterize the genomic variation within Bos indicus and, specifically, dairy breeds, we aim to identify non-reference sequences and construct a comprehensive pangenome.
Results: Five representative genomes of prominent dairy breeds, including Gir, Kankrej, Tharparkar, Sahiwal, and Red Sindhi, were sequenced using 10X Genomics 'linked-read' technology. Assemblies generated from these linked-reads ranged from 2.70 Gb to 2.77 Gb, comparable to the Bos indicus Brahman reference genome. A pangenome of Bos indicus cattle was constructed by comparing the newly assembled genomes with the reference using alignment and graph-based methods, revealing 8 Mb and 17.7 Mb of novel sequence respectively. A confident set of 6,844 Non-reference Unique Insertions (NUIs) spanning 7.57 Mb was identified through both methods, representing the pangenome of Indian Bos indicus breeds. Comparative analysis with previously published pangenomes unveiled 2.8 Mb (37%) commonality with the Chinese indicine pangenome and only 1% commonality with the Bos taurus pangenome. Among these, 2,312 NUIs encompassing ~ 2 Mb, were commonly found in 98 samples of the 5 breeds and designated as Bos indicus Common Insertions (BICIs) in the population. Furthermore, 926 BICIs were identified within 682 protein-coding genes, 54 long non-coding RNAs (lncRNA), and 18 pseudogenes. These protein-coding genes were enriched for functions such as chemical synaptic transmission, cell junction organization, cell-cell adhesion, and cell morphogenesis. The protein-coding genes were found in various prominent quantitative trait locus (QTL) regions, suggesting potential roles of BICIs in traits related to milk production, reproduction, exterior, health, meat, and carcass. Notably, 63.21% of the bases within the BICIs call set contained interspersed repeats, predominantly Long Interspersed Nuclear Elements (LINEs). Additionally, 70.28% of BICIs are shared with other domesticated and wild species, highlighting their evolutionary significance.
Conclusions: This is the first report unveiling a robust set of NUIs defining the pangenome of Bos indicus breeds of India. The analyses contribute valuable insights into the genomic landscape of desi cattle breeds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11804092 | PMC |
http://dx.doi.org/10.1186/s40104-024-01133-1 | DOI Listing |
Pestic Biochem Physiol
November 2025
Department of Biomedical Sciences, Catholic Kwandong University, Gangneung 25601, Republic of Korea.. Electronic address:
Fludioxonil, a fungicide commonly used in agriculture, has been detected in livestock, such as cattle, even though it is primarily intended for use in plants. Unintended exposure to fludioxonil may compromise immune cells, cardiomyocytes, and glioma cells, indicating its potential risk as an environmental hazard. However, research on the detrimental effects of fludioxonil remains scarce, particularly regarding its impact on livestock, which are directly exposed to fludioxonil because of its widespread agricultural use.
View Article and Find Full Text PDFSci Total Environ
September 2025
Human Foods Program, U.S. Food and Drug Administration, College Park, MD, USA.
Cattle are a reservoir for the zoonotic human foodborne pathogen Shiga toxin-producing Escherichia coli (STEC), the causative agent of many disease outbreaks associated with contaminated fresh leafy greens. Concentrated animal feeding operations (CAFOs) housing cattle generate fugitive dust, however the potential risk of STEC movement by means of the aerosolized dust is not well known. In this investigation, we used metagenome sequencing of air samples collected in an agricultural setting to investigate airborne transfer of STEC from a large CAFO to the surrounding area.
View Article and Find Full Text PDFComput Biol Med
September 2025
Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany. Electronic address:
Lameness in dairy cattle is a prevalent issue that significantly impacts both animal welfare and farm productivity. Traditional lameness detection methods often rely on subjective visual assessment, focusing on changes in locomotion and back curvature. However, these methods can lack consistency and accuracy, particularly for early-stage detection.
View Article and Find Full Text PDFVet Parasitol
September 2025
Instituto de Pesquisas Veterinárias Desidério Finamor, Eldorado do Sul, Rio Grande do Sul, Brazil. Electronic address:
Fluralaner is an isoxazoline acaricide with potent activity against Rhipicephalus (Boophilus) microplus, a major tick species affecting cattle in South America. In this study, larval bioassays were performed to evaluate the baseline susceptibility of R. microplus populations from Brazil and Argentina to fluralaner.
View Article and Find Full Text PDFRes Vet Sci
September 2025
Department of Veterinary Medicine, Federal University of Goiás, Goiânia 74605-080, Goiás, Brazil. Electronic address:
Human listeriosis is a severe food-borne illness, with fatality rates ranging from 20 to 30 %. In Brazil, despite being an underdiagnosed and underreported disease, the presence of the microorganism in food has been the subject of important studies. However, its occurrence in slaughterhouse environments has received little attention in recent years.
View Article and Find Full Text PDF