Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

TP63 is expressed as TAp63 and ΔNp63 from the P1 and P2 promoters, respectively. While TAp63 and ΔNp63 are expressed as three TAp63α/β/γ and ΔNp63α/β/γ due to alternative splicing, only p63α (TA and ΔN) and p63γ (TA and ΔN) proteins are found to be detectable and likely to be responsible for p63-dependent activity. Previous studies implied and/or demonstrated that TAp63α, which contains an N-terminal activation domain conserved in p53, functions as a tumor suppressor by regulating an array of genes for growth suppression. By contrast, ΔNp63α, which also contains an N-terminal activation domain but is different from that in TAp63, regulates a unique set of genes and functions as a master regulator for development of epidermis and other stratified epithelial tissues. However, the biological function of p63γ is largely unexplored. To explore this, we generated a mouse model in that exon 10', a coding exon specific for p63γ, was deleted by CRISPR-cas9. We showed that mice deficient in p63γ are viable and futile, which is different from mice deficient in total TP63 or p63α. Like TAp63-deficient mice, p63γ-deficient mice have a short lifespan and are prone to spontanenous tumors. Additionally, loss of p63γ shortens the lifespan of tumor-free mice potentially via increased cellular senescence. Moreover, mice deficient in p63γ are prone to chronic inflammation in multiple organs and liver steatosis potentially via altered lipid metabolism. Single-cell RNA-seq revealed that loss of p63γ increases the expression of SCD1, a rate-limiting enzyme for synthesis of monounsaturated fatty acids, leading to altered lipid homeostasis. Together, our data indicate that TP63γ is the primary isoform of TP63 for tumor suppression but not development by maintaining normal inflammatory response and lipid homeostasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11802870PMC
http://dx.doi.org/10.1038/s41420-025-02326-xDOI Listing

Publication Analysis

Top Keywords

mice deficient
12
primary isoform
8
isoform tp63
8
tp63 tumor
8
tumor suppression
8
suppression development
8
tap63 Δnp63
8
n-terminal activation
8
activation domain
8
deficient p63γ
8

Similar Publications

Polystyrene nanoplastics reprogramed pulmonary metabolisms mediated by immune regulation of myeloid hypoxia-inducible factor 1α.

Environ Int

September 2025

State Key Laboratory of Environmental Chemistry and Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Sciences, Northeastern University, Shenyang 110004, China; School of Environment, Hangzhou Institute for Advanced Study, Univ

Exposure to nanoplastics (NPs), a pervasive environmental pollutant, presents potential health risks. Pulmonary exposure to NPs has been shown to disrupt both pulmonary metabolic status and immune homeostasis, leading to concerns about their impact on respiratory health and systemic well-being. However, the underlying linkage and mechanisms remain elusive.

View Article and Find Full Text PDF

Patients with cystic fibrosis (CF) who are non-responsive to treatments due to specific mutations need alternative CFTR-independent therapies. This study aims to assess the impact of TMEM16a expression by a specific oligonucleotide (TMEM16a ASO) on dysregulated parameters in CF, which will help prepare for preclinical studies. In this study, we analyzed the effects of TMEM16a oligonucleotide within a CF context by evaluating the impact, optimal administration route, toxicity, and specificity in primary cells and various mouse models.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by ubiquitous deficiency in the SMN protein. The identification of disease modifiers is key to understanding pathogenic mechanisms and broadening the range of targets for developing SMA therapies that complement SMN upregulation. Here, we report a cell-based screen that identified inhibitors of p38 mitogen-activated protein kinase (p38 MAPK) as suppressors of proliferation defects induced by SMN deficiency in mouse fibroblasts.

View Article and Find Full Text PDF

Manipulating Zika virus RNA tertiary structure for developing tissue-specific attenuated vaccines.

EMBO Mol Med

September 2025

State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, 100071, Beijing, China.

Traditional live attenuated vaccines (LAVs) are typically developed through serial passaging or genetic engineering to introduce specific mutations or deletions. While viral RNA secondary or tertiary structures have been well-documented for their multiple functions, including binding with specific host proteins, their potential for LAV design remains largely unexplored. Herein, using Zika virus (ZIKV) as a model, we demonstrate that targeted disruption of the primary sequence or tertiary structure of a specific viral RNA element responsible for Musashi-1 (MSI1) binding leads to a tissue-specific attenuation phenotype in multiple animal models.

View Article and Find Full Text PDF

SIRT2 and NAD Boosting Broadly Suppress Aging-Associated Inflammation.

Aging Cell

September 2025

Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, USA.

Aging leads to chronic inflammation that is linked to aging-associated conditions and diseases. Multiple immune pathways become activated during aging, posing a challenge to effectively reduce aging-associated inflammation. SIRT2, an NAD-dependent deacetylase, suppresses several immune pathways that become activated during aging and may represent an attractive target to broadly dampen aging-associated inflammation.

View Article and Find Full Text PDF