Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The conversion of electricity into hydrogen (H) gas through electrochemical water splitting using efficient electrocatalysts has been one of the most important future technologies to create vast amounts of clean and renewable energy. Low-temperature electrolyzer systems, such as proton exchange membrane water electrolyzers, alkaline water electrolyzers, and anion exchange membrane water electrolyzers are at the forefront of current technologies. Their performance, however, generally depends on electricity costs and system efficiency, which can be significantly improved by developing high-performance electrocatalysts to enhance the kinetics of both the cathodic hydrogen evolution reaction and the anodic oxygen evolution reaction. Despite numerous active research efforts in catalyst development, the performance of water electrolysis remains insufficient for commercialization. Ongoing research into innovative electrocatalysts and an understanding of the catalytic mechanisms are critical to enhancing their activity and stability for electrolyzers. This is still a focus at academic institutes/universities and industrial R&D centers. Herein, we provide an overview of the current state and future directions of electrocatalysts and water electrolyzers for electrochemical H production. Additionally, we describe in detail the technological framework of electrocatalysts and water electrolyzers for H production as utilized by relevant global companies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11802996PMC
http://dx.doi.org/10.1186/s40580-024-00468-9DOI Listing

Publication Analysis

Top Keywords

water electrolyzers
20
electrocatalysts water
12
water
8
water splitting
8
exchange membrane
8
membrane water
8
evolution reaction
8
electrocatalysts
6
electrolyzers
6
current status
4

Similar Publications

3D printing, as a versatile additive manufacturing technique, offers high design flexibility, rapid prototyping, minimal material waste, and the capability to fabricate complex, customized geometries. These attributes make it particularly well-suited for low-temperature hydrogen electrochemical conversion devices-specifically, proton exchange membrane fuel cells, proton exchange membrane electrolyzer cells, anion exchange membrane electrolyzer cells, and alkaline electrolyzers-which demand finely structured components such as catalyst layers, gas diffusion layers, electrodes, porous transport layers, and bipolar plates. This review provides a focused and critical summary of the current progress in applying 3D printing technologies to these key components.

View Article and Find Full Text PDF

Constructing heterogeneous dual-site catalysts is anticipated for oxygen evolution reaction (OER). However, compared to the adsorbate evolution mechanism (AEM), the triggering oxide pathway mechanism (OPM) for catalysts poses challenges due to elusive structural evolution and low intrinsic activity. Herein, considering the distinct adsorption propensity of heterogeneous Ni-Fe sites toward differential intermediates (OH-O), the PO-induced deep reconstruction triggers a dual-site Ni-Fe discrepant oxide pathway mechanism (DOPM) for R-PO-NiCoFeOOH.

View Article and Find Full Text PDF

The Role of Operating Temperature on Pore-Scale Gas Transport in Polymer Electrolyte Membrane Electrolyzers.

Adv Sci (Weinh)

September 2025

Bazylak Group, Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, M5S 3G8, Canada.

In this study, the effects of operating temperature on pore-scale gas bubble transport in a carbon-based anode porous transport layer (PTL) of a polymer electrolyte membrane (PEM) electrolyzer is revealed using operando X-ray computed tomography (CT). Higher temperature operation (80 °C compared to 40 °C) led to a lower total gas bubble volume fraction in the PTL (0.25 to 0.

View Article and Find Full Text PDF

Stimulating Efficiency for Proton Exchange Membrane Water Splitting Electrolyzers: From Material Design to Electrode Engineering.

Electrochem Energ Rev

September 2025

Institute of New Energy Materials and Engineering, College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108 Fujian China.

Unlabelled: Proton exchange membrane water electrolyzers (PEMWEs) are a promising technology for large-scale hydrogen production, yet their industrial deployment is hindered by the harsh acidic conditions and sluggish oxygen evolution reaction (OER) kinetics. This review provides a comprehensive analysis of recent advances in iridium-based electrocatalysts (IBEs), emphasizing novel optimization strategies to enhance both catalytic activity and durability. Specifically, we critically examine the mechanistic insights into OER under acidic conditions, revealing key degradation pathways of Ir species.

View Article and Find Full Text PDF

The difference in hydroxyl adsorption between Ni and Fe sites in NiFeOOH limits the efficient dual-site synergistic mechanism (DSSM) during oxygen evolution reaction (OER). Here, a novel needle-array electrodeposition is reported for the scalable and efficient fabrication of Co and Y co-doped NiFeOOH catalyst. It achieves an ultralow overpotential of 270 mV at 1 A cm with a small Tafel slope of 30.

View Article and Find Full Text PDF