98%
921
2 minutes
20
Diet-induced obesity can cause long-term alterations in ovarian functions, but the acute effects of obesogenic diets on the follicular cells and their progression over time, when intake is continued and obesity develops, remain unclear. We aimed to determine the onset and progression of changes in the granulosa cell transcriptomic profile after starting a high-fat/high sugar (HFHS)-diet feeding in mice. We also examined the changes in oocyte lipid droplet content and mitochondrial ultrastructural abnormalities. Swiss (outbred) mice were sacrificed at 24 h, 3 days, and at 1, 4, 8, 12, and 16 weeks of feeding HFHS and control diets. Lipid droplet content significantly increased in the HFHS oocytes within 24 h compared to controls (P < 0.05). Oocyte mitochondrial abnormalities only increased starting from 8 weeks. Granulosa RNA-seq revealed altered transcriptomic gene-set enrichments (GO terms and KEGG pathways, Padj < 0.05) already at 3 days and 1 week indicating acute endoplasmic reticulum unfolded protein responses, with concomitant fluctuations in several cellular metabolic pathways and gene sets related to mitochondrial bioenergetic functions, some of which persisted after 8 weeks. Interestingly, the short- and long-term patterns of changes in cytochrome P450, steroid hormone biosynthesis, retinol metabolism, bile acid metabolism, fatty acid metabolism, and Pi3K/Akt signaling pathways were most prominent and highly correlated; all being acutely upregulated, then chronically downregulated. These results show that the impact of obesogenic diet on the oocyte and granulosa cells is prompt, while the response depends on the duration of feeding and occurs in a multiphasic cascade together with a progressive deterioration in oocyte quality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/biolre/ioaf027 | DOI Listing |
Bioimpacts
August 2025
Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
Introduction: Hepatocellular carcinoma (HCC) remains a major cause of cancer mortality, and effective therapeutic options are limited. MicroRNA‑372‑3p (miR‑372‑3p) has been implicated in HCC, yet its exact role is unclear.
Methods: We established miR‑372‑3p‑overexpressing HCC cell lines (HepG2, SNU‑449, JHH‑4) via lentiviral transduction.
Food Res Int
November 2025
National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China. Electronic address: chichang
This study aimed to analyze the amino acid composition and characterize the sequences of collagen peptides from Skipjack tuna bones (TBCPs) by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and further investigate the function and mechanism of action of TBCPs in nonalcoholic fatty liver disease (NAFLD). The results showed that TBCPs contain 16 types of amino acids, among which glycine is the most abundant, and hydrophobic amino acids account for 40.75 %.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Neuroscience, The Scripps Research Institute, San Diego, CA 92037.
Microglia regulate neuronal circuit plasticity. Disrupting their homeostatic function has detrimental effects on neuronal circuit health. Neuroinflammation contributes to the onset and progression of neurodegenerative diseases, including Alzheimer's disease (AD), with several microglial activation genes linked to increased risk for these conditions.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
September 2025
Institute of Pharmacology and Toxicology, Goethe University Frankfurt, Frankfurt, Germany.
The A20 binding inhibitor of nuclear factor-kappa B (NF-κB)-1 (ABIN-1) serves as a ubiquitin sensor and autophagy receptor, crucial for modulating inflammation and cell death. Our previous in vitro investigation identified the LC3-interacting region (LIR) motifs 1 and 2 of ABIN-1 as key mitophagy regulators. This study aimed to explore the in vivo biological significance of ABIN1-LIR domains using a novel CRISPR-engineered ABIN1-ΔLIR1/2 mouse model, which lacks both LIR motifs.
View Article and Find Full Text PDFCell Mol Life Sci
September 2025
Department of Gastroenterology, The Second Hospital of Shandong University, Jinan, China.
Metabolic associated steatohepatitis (MASH) is a severe form of metabolic dysfunction-associated steatotic liver disease (MASLD) characterized by hepatocellular injury, inflammation, and fibrosis. Despite advances in understanding its pathophysiology, the molecular mechanisms driving MASH progression remain unclear. This study investigates the role of long non-coding RNA Linc01271 in MASLD/MASH pathogenesis, ant its involvement in the miR-149-3p/RAB35 axis and PI3K/AKT/mTOR signaling pathway.
View Article and Find Full Text PDF