98%
921
2 minutes
20
Background: Sacroiliitis is a hallmark of ankylosing spondylitis (AS), and early detection plays an important role in managing the condition effectively. MRI is commonly used for diagnosing sacroiliitis, traditional methods often depend on subjective interpretation or limited automation which can introduce variability in diagnoses. The integration of semi-supervised segmentation and radiomics features may reduce reliance on expert interpretation and the need for large annotated datasets, potentially enhancing diagnostic workflows.
Purpose: To develop a diagnostic model for sacroiliitis and bone marrow edema (BME) using semi-supervised segmentation and radiomics analysis of MRI images.
Study Type: Retrospective cohort study.
Population: A total of 257 patients (161 males, 93 females; age 11-74 years), including 155 sacroiliitis and 175 BME patients. A total of 514 sacroiliac joint (SIJ) MRI images are analyzed, with 359 used for training and 155 for testing.
Field Strength/sequence: 3.0 T, spin echo T1-weighted imaging (T1WI) and short-tau inversion recovery (STIR).
Assessment: SIJ segmentation is automated using the semi-supervised segmentation-based Unimatch framework. Manual delineation of SIJ regions of interest (ROIs) on T1WI images by an experienced radiologist (W.M., 10-year experience) served as the reference standard for segmentation performance evaluation. Radiomics features from T1WI and STIR are used to train machine learning models, including support vector machine (SVM), logistic regression (LR), and light gradient boosting machine (LightGBM), for sacroiliitis and BME detection. Performance is assessed using area under the curve (AUC), sensitivity, specificity, and accuracy. The Dice coefficient is used to assess the performance of the semi-supervised segmentation model on SIJ segmentation.
Statistical Tests: Performance is evaluated using receiver operating characteristic (ROC) curves and decision curve analysis (DCA).
Result: The Unimatch model achieves an average Dice coefficient of 0.859 for SIJ segmentation. AUCs for sacroiliitis detection are 0.84 (LR), 0.86 (SVM), and 0.78 (LightGBM), while for BME detection, AUCs are 0.73 (LR), 0.76 (SVM), and 0.70 (LightGBM).
Data Conclusion: This study demonstrates that semi-supervised segmentation combined with radiomics features and machine learning models provides a promising approach for diagnosis of sacroiliitis and BME.
Plain Language Summary: This study aimed to improve the diagnosis of sacroiliitis and bone marrow edema in patients with ankylosing spondylitis. The researchers used a method that automatically segments MRI images and analyzes features from those images. By applying machine learning, they created models to help detect sacroiliitis and bone marrow edema more accurately. The results show that this approach can effectively assist in identifying these conditions, with the best accuracy for sacroiliitis and bone marrow edema reaching 81.2% and 74.2%, respectively. This method could help doctors make better decisions, offering a promising tool for improving diagnosis in clinical settings.
Level Of Evidence: 3 TECHNICAL EFFICACY: Stage 2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmri.29731 | DOI Listing |
Rep Pract Oncol Radiother
August 2025
University Teaching Department, Chhattisgarh Swami Vivekanand Technical University, Bhilai, India.
Cervical cancer continues to pose a significant global health challenge, highlighting the urgent need for accurate and efficient diagnostic techniques. Recent progress in deep learning has demonstrated considerable potential in improving the detection and classification of cervical cancer. This review presents a thorough analysis of deep learning methods utilized for cervical cancer diagnosis, with an emphasis on critical approaches, evaluation metrics, and the ongoing challenges faced in the field.
View Article and Find Full Text PDFIEEE Trans Autom Sci Eng
January 2025
H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
Cone beam computed tomography (CBCT) is a widely-used imaging modality in dental healthcare. It is an important task to segment each 3D CBCT image, which involves labeling lesions, bone, teeth, and restorative material on a voxel-by-voxel basis, as it aids in lesion detection, diagnosis, and treatment planning. The current clinical practice relies on manual segmentation, which is labor-intensive and demands considerable expertise.
View Article and Find Full Text PDFBiomed Eng Lett
September 2025
Department of Precision Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea.
Unlabelled: Foundation models, including large language models and vision-language models (VLMs), have revolutionized artificial intelligence by enabling efficient, scalable, and multimodal learning across diverse applications. By leveraging advancements in self-supervised and semi-supervised learning, these models integrate computer vision and natural language processing to address complex tasks, such as disease classification, segmentation, cross-modal retrieval, and automated report generation. Their ability to pretrain on vast, uncurated datasets minimizes reliance on annotated data while improving generalization and adaptability for a wide range of downstream tasks.
View Article and Find Full Text PDFIEEE Trans Med Imaging
September 2025
Semi-Supervised Learning (SSL) is important for reducing the annotation cost for medical image segmentation models. State-of-the-art SSL methods such as Mean Teacher, FixMatch and Cross Pseudo Supervision (CPS) are mainly based on consistency regularization or pseudo-label supervision between a reference prediction and a supervised prediction. Despite the effectiveness, they have overlooked the potential noise in the labeled data, and mainly focus on strategies to generate the reference prediction, while ignoring the heterogeneous values of different unlabeled pixels.
View Article and Find Full Text PDFFamily history is one the most powerful risk factor for attention-deficit/hyperactivity disorder (ADHD), yet no study has tested whether multimodal Magnetic Resonance Imaging (MRI) combined with deep learning can separate familial ADHD (ADHD-F) and non-familial ADHD (ADHD-NF). T1-weighted and diffusion-weighted MRI data from 438 children (129 ADHD-F, 159 ADHD-NF, and 150 controls) were parcellated into 425 cortical and white-matter metrics. Our pipeline combined three feature-selection steps (t-test filtering, mutual-information ranking, and Lasso) with an auto-encoder and applied the binary-hypothesis strategy throughout; each held-out subject was assigned both possible labels in turn and evaluated under leave-one-out testing nested within five-fold cross-validation.
View Article and Find Full Text PDF