Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Genome-wide association study (GWAS) and quantitative trait locus (QTL) mapping methods provide valuable insights and opportunities for identifying functional gene underlying phenotype formation. However, the majority of GWAS risk loci and QTLs located in noncoding regions poses significant challenges in pinpointing the protein-coding genes associated with specific traits. Moreover, growing evidence suggests not all GWAS risk loci and QTLs are functional, emphasizing the critical need for prioritizing causal sites-a task of paramount importance for biologists. The accumulation of publicly available multiomics data provides an unprecedented opportunity to annotate and prioritize GWAS risk loci and QTLs. Therefore, we developed a comprehensive multiomics database encompassing four major agricultural species-pig, sheep, cattle, and chicken. This database integrates publicly accessible datasets, including 140 GWAS studies (covering 471 traits), 2625 QTL datasets (spanning 1235 traits), 86 Hi-C datasets (from eight cells/tissue types), 95 epigenomic datasets (from four cells/tissue types), and 769 transcription factor motifs. The database aims to link GWAS-QTL loci located in the noncoding regions to the target genes they regulate and prioritize functional and causal regulatory elements. Ultimately, it provides a valuable resource and potential validation targets for elucidating the genes and molecular pathways underlying economically important traits in agricultural animals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11904539 | PMC |
http://dx.doi.org/10.1016/j.jbc.2025.108267 | DOI Listing |