98%
921
2 minutes
20
Introduction: It is unclear whether plants and microorganisms achieve niche complementarity by taking up different inorganic nitrogen (N) forms to alleviate N competition, particularly in N-limited regions.
Methods: This paper conducted a 15-day N tracer study (NHNO or NHNO) to quantitatively calculate the uptake rates of plants and microorganisms in four stands (pure L, pure Carrière, mixed -, and Weber ex Stechm grassland) in the forest-grassland transition zone on the Loess Plateau during the growing season. Among them, and can associated with arbuscular mycorrhizal and ectomycorrhizal, respectively.
Results: The results indicated that in the pure stand and preferred to take up NO , whereas in the pure stand preferred NH . Compared to pure stands, mixed afforestation decreased the NH and NO uptake rate of by 87% and 70%, respectively, but did not alter the N preference of plants. Plants and microorganisms differed in their N preferences in the pure stand, whereas this was not the case in the mixed stand. The proportional similarity index between and (0.90 ± 0.01) was higher than that between plants and microorganisms in forest stands, except for and microorganisms in the mixed stand (0.90 ± 0.02).
Discussion: Those results indicated that niche complementarity by preferring different N forms can alleviate N competition. This study helped to gain a deeper understanding of the plasticity of N uptake patterns by plants and microorganisms in the forest-grassland transition zone, and provides theoretical support for vegetation restoration during the implementation of the Grain for Green program on the Loess Plateau.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790565 | PMC |
http://dx.doi.org/10.3389/fpls.2024.1480517 | DOI Listing |
Environ Microbiol Rep
October 2025
Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador.
Plant roots are colonised by diverse communities of microorganisms that can affect plant growth and enhance plant resistance to (a) biotic stresses. We investigated the role of the indigenous soil microbiome in the resistance of tomato to the invasive sap-sucking insect Prodiplosis longifila (Diptera: Cecidomyiidae). Native and agricultural soils were sampled from the Andes in Southern Ecuador and tested, in greenhouse bioassays, for leaf tissue damage caused by P.
View Article and Find Full Text PDFAnnu Rev Microbiol
September 2025
3Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
Plant biomass has emerged as a cornerstone of the global bioenergy landscape because of its abundance and cost-effectiveness. The cell wall of plant biomass is an intricate network of cellulose, hemicellulose, and lignin. The hydrolysis of cellulose and hemicellulose by holoenzymes converts these polymers into monosaccharides and paves the way for the production of bioethanol and other bio-based products.
View Article and Find Full Text PDFAnnu Rev Entomol
September 2025
2Department of Entomology and Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA; email:
Nutritional symbioses with microorganisms have profoundly shaped the evolutionary success of ants, enabling them to overcome dietary limitations and thrive across diverse ecological niches and trophic levels. These interactions are particularly crucial for ants with specialized diets, where microbial symbionts compensate for dietary imbalances by contributing to nitrogen metabolism, vitamin supplementation, and the catabolism of plant fibers and proteins. This review synthesizes recent advances in our understanding of ant-microbe symbioses, focusing on diversity, functional roles in host nutrition, and mechanisms of transmission of symbiotic microorganisms.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Other Health Sciences, University of Gondar, Gondar, Ethiopia.
Foodborne diseases pose a significant public health challenge worldwide. The increasing availability of edible oils in the market, combined with Ethiopia's lack of stringent quality control and regulatory oversight, raises concerns about their safety. This inadequacy in regulation may contribute to microbial contamination, leading to potential public health risks.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
The turnover of dissolved organic matter (DOM) in soil regulated by biodegradable microplastics (MPs) has garnered much attention due to its profound impact on the storage and stability of soil organic matter. However, the transformation and reactivity of plant-derived and microbially derived DOM by microorganisms adapted to biodegradable MPs, and the involved microbial physiological processes, remain nearly unknown. Here, we added virgin and aged polylactic acid (PLA) and polyhydroxyalkanoate (PHA) to agricultural soils and incubated for 56 days.
View Article and Find Full Text PDF