98%
921
2 minutes
20
Hexabromocyclododecane (HBCD), a brominated flame retardant, is linked to various health implications, including prostate cancer. This study explored the molecular mechanisms and potential biomarkers associated with HBCD exposure using data from the Comparative Toxicogenomics Database (CTD) and The Cancer Genome Atlas (TCGA). A total of 7,147 differentially expressed genes (DEGs) and 46 differentially expressed miRNAs were identified, with significant enrichment in cancer-related pathways and xenobiotic metabolism. Protein-protein interaction (PPI) network construction and enrichment analyses revealed four hub genes: DNAJC12, PKMYT1, RRM2, and SLC12A5. These genes displayed notable expression changes in response to HBCD exposure and were strongly correlated with survival outcomes in prostate cancer patients, as demonstrated by Cox regression and ROC curve analyses. Additionally, miRNA correlation analyses indicated robust positive associations, highlighting a coordinated regulatory network. Experimental expression analyses on HBCD-treated cell lines further validated these findings. This study sheds light on the significant impact of HBCD on gene and miRNA expression in prostate cancer, emphasizing the potential of the identified hub genes and miRNAs as prognostic biomarkers and therapeutic targets. By elucidating the pathways and regulatory networks influenced by HBCD, the findings provide a foundation for developing strategies to mitigate its carcinogenic effects and improve outcomes for prostate cancer patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11788417 | PMC |
http://dx.doi.org/10.1093/toxres/tfaf016 | DOI Listing |
JAMA
September 2025
Division of Surgery and Interventional Science, UCL, London, United Kingdom.
Importance: Multiparametric magnetic resonance imaging (MRI), with or without prostate biopsy, has become the standard of care for diagnosing clinically significant prostate cancer. Resource capacity limits widespread adoption. Biparametric MRI, which omits the gadolinium contrast sequence, is a shorter and cheaper alternative offering time-saving capacity gains for health systems globally.
View Article and Find Full Text PDFInt J Surg
September 2025
Department of Radiology, Sichuan Provincial People's Hospital East Sichuan Hospital&Dazhou First People's Hospital, Dazhou, China.
Ann Nucl Med
September 2025
Department of Nuclear Medicine, Marmara University School of Medicine, Istanbul, Turkey.
Objective: This study aims to systematically evaluate the inter- and intra-observer agreement regarding lesions with uncertain malignancy potential in Ga-68 PSMA PET/CT imaging of prostate cancer patients, utilizing the PSMA-RADS 2.0 classification system, and to emphasize the malignancy evidence associated with these lesions.
Methods: We retrospectively reviewed Ga-68 PSMA PET/CT images of patients diagnosed with prostate cancer via histopathology between December 2016 and November 2023.
Cancer Causes Control
September 2025
Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA.
Purpose: The U.S. Preventive Services Task Force recommends that men aged 55-69 years undergo shared decision-making (SDM) regarding prostate cancer (PCa) screening, and routine screening is not recommended for older men or those with limited life expectancy.
View Article and Find Full Text PDFMed Oncol
September 2025
Department of Biotechnology, Institute of Engineering and Management, University of Engineering and Management, Kolkata, Kolkata, India.
Oligomeric proanthocyanidins (OPCs), condensed tannins found plentiful in grape seeds and berries, have higher bioavailability and therapeutic benefits due to their low degree of polymerization. Recent evidence places OPCs as effective modulators of cancer stem cell (CSC) plasticity and tumor growth. Mechanistically, OPCs orchestrate multi-pathway inhibition by destabilizing Wnt/β-catenin, Notch, PI3K/Akt/mTOR, JAK/STAT3, and Hedgehog pathways, triggering β-catenin degradation, silencing stemness regulators (OCT4, NANOG, SOX2), and stimulating tumor-suppressive microRNAs (miR-200, miR-34a).
View Article and Find Full Text PDF