Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
This paper presents a hybrid prediction model, ECOA-BiTCN-BiLSTM, for predicting dew in cold areas. The model integrates BiTCN and BiLSTM neural networks to enhance performance. An enhanced Crayfish optimization algorithm (ECOA) with four mixed strategies was employed to optimize the model's hyperparameters and reduce the impact of arbitrary selection. The proposed ECOA-BiTCN-BiLSTM model was validated using dew data from farmland in a northeastern Chinese city. Comparative experiments were conducted against the BiTCN model, the BiLSTM model, the original BiTCN-BiLSTM model, and other models optimized with advanced swarm intelligence algorithms. The experimental results demonstrate that the proposed model achieved a mean absolute error (MAE) of 0.002424, a root mean square error (RMSE) of 0.003984, and a mean absolute percentage error (MAPE) of 0.123050, with a coefficient of determination R of 0.999840. These results indicate that the ECOA-BiTCN-BiLSTM model outperforms the other prediction models across all evaluated metrics, offering higher prediction accuracy and highly effective prediction models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794478 | PMC |
http://dx.doi.org/10.1038/s41598-024-74097-x | DOI Listing |