Aggregation behavior of photoaging nanoplastics in artificial sweat solutions.

J Hazard Mater

Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Southwest United Graduate School, Kunming, Yunnan Province 650092, China. Electronic address:

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The aging process and aggregation behavior of nanoplastics govern their fate and ecological risk in aquatic environments. Unfortunately, the aggregation behavior of nanoplastics in sweat and the effect of aging on this process remains unknown. This study investigated the aggregation kinetics of polystyrene nanoplastics (PS-NPs) in three types of artificial sweat before and after photoaging. The aggregation rates (k) of PS-NPs before and after photoaging followed the order ofAmerican-Association-of-Textile-Chemists-and-Colorists-pH-4.3 (k =0.6381 nm/s, k =0.4337 nm/s) > British-Standard-pH-6.5 (k =0.3589 nm/s, k =0.1297 nm/s) >International-Standard-Organization-pH-8.0 (k =0 nm/s, k =0 nm/s). Photoaging decreased the C-O content on the surface of PS-NPs from 4.47 % to 1.97 %, thus to promote the aggregation of PS-NPs. Moreover, decrease of the pH value of three types of artificial sweat (from 8.0 to 4.3) all increased the aggregation rate of the PS-NPs. Inorganic constituents (NaCl and NaHPO) promoted the aggregation of PS-NPs by increasing the positive charges on the surface of PS-NPs, while organic constituents (L-histidine, lactic acid, and urea) stabilized PS-NPs by adsorbing on the surface of PS-NPs. These findings demonstrated that the solution conditions of sweat and photoaging process together determined the transport and distribution of nanoplastics in sweat, offering new insights for assessing and predicting the skin exposure risk of nanoplastics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2025.137466DOI Listing

Publication Analysis

Top Keywords

aggregation behavior
12
artificial sweat
12
surface ps-nps
12
ps-nps
9
aggregation
8
aging process
8
behavior nanoplastics
8
nanoplastics sweat
8
three types
8
types artificial
8

Similar Publications

Background: Neighborhoods resulting from rapid urbanization processes are often saturated with eateries for local communities, potentially increasing exposure to unhealthy foods and creating diabetogenic residential habitats.

Objective: We examined the association between proximity of commercial food outlets to local neighborhood residences and type 2 diabetes (T2D) cases to explore how local T2D rates vary by location and provide policy-driven metrics to monitor food outlet density as a potential control for high local T2D rates.

Methods: This cross-sectional ecological study included 11,354 patients with active T2D aged ≥20 years geocoded using approximate neighborhood residence aggregated to area-level rates and counts by subdistricts (mukims) in Penang, northern Malaysia.

View Article and Find Full Text PDF

Microalgae-bacteria symbiosis system is significant for sustainable and low-carbon wastewater treatment, with self-aggregation being key to its stable operation and effective pollutant removal. Cellular motility is the main driving force behind self-aggregation, crucial for symbiosis stability, but the characteristics and patterns involved still remain largely unexplored. Here, cellular movement dynamics into the microalgae-activated sludge model (ASM3) is incorporated, enabling synchronized simulation of metabolic activities and movement behaviors through physical and biochemical interactions in bioreactor systems.

View Article and Find Full Text PDF

Aims: The clusterin (CLU) gene is genetically associated with Alzheimer's disease (AD), and CLU levels have been shown to positively correlate with regional Aβ deposition in the brain, including in arteries from cerebral amyloid angiopathy (CAA) patients. CLU has also been shown to alter the aggregation, toxicity and blood-brain barrier transport of amyloid beta (Aβ) and has therefore been suggested to play a key role in regulating the balance between Aβ deposition and clearance in both the brain and cerebral blood vessels. However, it remains unclear whether the role of clusterin in relation to Aβ deposition is protective or pathogenic.

View Article and Find Full Text PDF

Organic mixed ionic-electronic conducting polymers remain at the forefront of materials development for bioelectronic device applications. During electrochemical operation, structural dynamics and variations in electrostatic interactions in the polymer occur, which affect dual transport of the ions and electronic charge carriers. Such effects remain unclear due to a lack of spectroscopic methods capable of capturing these dynamics, which hinders the rational design of higher-performance polymers.

View Article and Find Full Text PDF

Tunable Fractal Morphogenesis in Reaction-Diffusion Crystallization: From Dendrites to Compact Aggregates.

ACS Omega

September 2025

Department of Chemistry, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, 1107 2020 Beirut, Lebanon.

Fractal growth in reaction-diffusion frameworks (RDF) offers a powerful paradigm for understanding self-assembly in chemical and materials systems. However, its connection to diffusion-limited aggregation (DLA) remains underexplored. Here, we present the first quantitative demonstration of RDF-driven fractal crystallization of benzoic acid (BA), revealing a direct correlation among fractal dimension, diffusion rate, and gel-matrix chemistry.

View Article and Find Full Text PDF