Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Climate changes disrupt environmental and soil conditions that affect ionic balance in plants, presenting significant challenges to their survival and productivity. Membrane transporters are crucial for maintaining ionic homeostasis and regulating the movement of substances across plasma and organellar membranes, particularly under abiotic stresses. Among these abiotic stress-responsive mechanisms, stomata are critical for regulating water loss and carbon dioxide uptake, reflecting a plant's ability to respond and adapt to abiotic stresses effectively. This review highlights the role of ion transporters, including both anion and cation transporters in plant abiotic stress responses. It explores the interplay between different ion channels and regulatory components that enable plants to withstand key abiotic stresses such as drought, salinity, and heat. Moreover, we emphasized the contributions of three essential types of ion channels - potassium, anion, and calcium to abiotic stress-related stomatal regulation. These ion channels orchestrate complex signaling networks that allow plants to modulate stomatal behavior and maintain physiological balance under adverse conditions. This article provides valuable molecular and physiological insights into the mechanisms of ion transport and regulation for plants to adapt to environmental challenges. Thus, this review offers a useful foundation for developing innovative strategies to enhance crop resilience and performance in an era of increasingly unpredictable and harsh climates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2025.109574 | DOI Listing |