-Mediated Insulin Signaling Pathway Was Involved in O-Induced Multigenerational Effects of Shortened Lifespan in .

Environ Sci Technol

Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, Shanxi, PR China.

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

As a long-standing atmospheric pollutant, ozone (O) exerts enduring effects on biological health. However, experimental research on its impact on organism lifespan and generational effects is limited. This study exposed three generations of fruit flies () to O, revealing a shortened lifespan across generations. Specifically, after O exposure, the lifespan of the F2 generation was significantly reduced compared with F0 and F1 generations, indicating a cumulative multigenerational effect. Transcriptome analysis unveiled significant disruptions in metabolic pathways, notably the insulin signaling pathway. Subsequent qRT-PCR analysis showed elevated mRNA levels of insulin pathway-related genes (, , , , and ), alongside decreased expression levels of , , and in flies exposed to O. Notably, knocking down , rather than , and , rescued the O-induced lifespan shortening. Overall, O exposure triggered activation of the dilp2-mediated InR-FOXO/TOR-4E-BP-Atg5 signaling pathway, potentially contributing to shortened lifespan with cumulative effects. This study highlights the viability of employing fruit flies as a model to evaluate the multigenerational toxicity of environmental pollutants, particularly atmospheric pollutants.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.4c04580DOI Listing

Publication Analysis

Top Keywords

signaling pathway
12
shortened lifespan
12
insulin signaling
8
fruit flies
8
lifespan
6
-mediated insulin
4
pathway involved
4
involved o-induced
4
o-induced multigenerational
4
effects
4

Similar Publications

The hallmarks of mechanosensitive ion channels have been observed for half a century in various cell lines, although their mechanisms and molecular identities remained unknown until recently. Identification of the bona fide mammalian mechanosensory Piezo channels resulted in an explosion of research exploring the translation of mechanical cues into biochemical signals and dynamic cell morphology responses. One of the Piezo isoforms - Piezo1 - is integral in the erythrocyte (red blood cell; RBC) membrane.

View Article and Find Full Text PDF

Rising atmospheric CO exposes plants to high-CO environments, while excessive nitrogen fertilizer use degrades soil, highlighting the need to reduce nitrogen input and cultivate vigorous cucumber seedlings under HC-LN conditions. Calcineurin B-like proteins (CBLs) sense calcium signals and regulate carbon/nitrogen metabolism via CBL-interacting protein kinases (CIPKs), though their roles in cucumber under HC-LN conditions are unclear. Here, we identified seven and 19 genes.

View Article and Find Full Text PDF

Incretin Signaling Neighborhoods and Adverse Drug Reactions.

Annu Rev Pharmacol Toxicol

September 2025

1Department of Physiology and Pharmacology and Center for Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden; email:

In light of the success of blockbuster drugs for type 2 diabetes and obesity based on the GLP-1 hormone, drugmakers have concentrated their efforts on developing new and improved variations that address the route of administration, dosing, pathway selectivity, or polypharmacology. While some of these modifications have demonstrated improved efficacy in clinical studies and offered exciting opportunities for treating other diseases, drug-induced shifts to the conformational landscape of target receptors may have consequences for side effects. Our review summarizes advances in the understanding of the biochemistry, pharmacogenomics, and molecular pharmacology of incretins and their cognate receptors.

View Article and Find Full Text PDF

Acute sleep deprivation (SD) rapidly alleviates depression, addressing a critical gap in mood disorder treatment. Rapid eye movement SD (REM SD) modulates the excitability of vasoactive intestinal peptide (VIP) neurons, influencing the synaptic plasticity of pyramidal neurons. However, the precise mechanism remains undefined.

View Article and Find Full Text PDF

Living with temperature changes: Salicylic acid at the crossroads of plant immunity and temperature resilience.

Sci Adv

September 2025

Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.

Salicylic acid (SA) is a key defense hormone shaped by temperature. High temperatures suppress, while low temperatures enhance, SA biosynthesis and signaling, thereby influencing plant immunity and temperature resilience. This review synthesizes current understanding of how temperature modulates SA pathways and their cross-talk with other hormones to balance growth and defense.

View Article and Find Full Text PDF