Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Telomere length (TL) and mitochondrial DNA copy number (mtDNAcn) variations are linked to age-related diseases and are associated with environmental exposure and nutritional status. Limited data, however, exist on the associations with mercury exposure, particularly early in life.

Objective: We examined the association between prenatal mercury (Hg) exposure and TL and mtDNAcn in 1,145 Seychelles children, characterized by a fish-rich diet.

Methods: Total mercury (THg) was determined in maternal hair at delivery and cord blood. TL and mtDNAcn were determined relative to a single-copy hemoglobin beta gene in the saliva of 7-y-old children. Linear regression models assessed associations between THg and relative TL (rTL) and relative mtDNAcn (rmtDNAcn) while controlling for maternal and cord serum polyunsaturated fatty acid (PUFA) status and sociodemographic factors. Interactions between THg and child sex, PUFA, and telomerase genotypes were evaluated for rTL and rmtDNAcn.

Results: Higher THg concentrations in maternal hair and cord blood were associated with longer rTL [; 95% confidence interval (CI): 0.002, 0.016 and ; 95% CI: 0.001, 0.003, respectively], irrespective of sex, PUFA, or telomerase genotypes. Maternal serum n-6 PUFA and n-6/n-3 ratio were associated with shorter [; 95% CI: , and ; 95% CI: , , respectively] and PUFA with longer (; 95% CI: 0.032, 0.65) rTL. Cord blood n-6 PUFA was associated with longer (; 95% CI: 0.050, 0.26) rTL. Further analyses revealed linoleic acid in maternal blood and arachidonic acid in cord blood as the main drivers of the n-6 PUFA associations. No associations were observed for THg and PUFA with rmtDNAcn.

Discussion: Our results indicate that prenatal THg exposure and PUFA status are associated with rTL later in childhood, although not consistently aligned with our initial hypothesis. Subsequent research is needed to confirm this finding, further evaluate the potential confounding of fish intake, and investigate the underlying molecular mechanisms to verify the use of rTL as a true biomarker of THg exposure. https://doi.org/10.1289/EHP14776.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11793161PMC
http://dx.doi.org/10.1289/EHP14776DOI Listing

Publication Analysis

Top Keywords

cord blood
16
mercury exposure
12
n-6 pufa
12
pufa
10
prenatal mercury
8
exposure pufa
8
telomere length
8
copy number
8
maternal hair
8
pufa status
8

Similar Publications

Risk of death for both mother and fetus following Ebola virus infection is extremely high. In this study, healthy women in Rwanda aged ≥18 years were randomized to two-dose Ebola vaccination (Ad26.ZEBOV, MVA-BN-Filo) during pregnancy (group A) or postpartum (group B).

View Article and Find Full Text PDF

Background: Patients with acute myeloid leukemia (AML) are often older, which brings challenges of endurance and persistent efficacy of autologous chimeric antigen receptor (CAR)-T cell therapies. Allogenic CAR-natural killer (NK) cell therapies may offer reduced toxicities and enhanced anti-leukemic potential against AML. CD33 CAR-NK cells have been investigated for AML therapy.

View Article and Find Full Text PDF

Tetrabromobisphenol A (TBBPA), a widely used flame retardant in textiles and electronics, poses toxicological risks through both environmental and indoor exposures. Biomonitoring studies have detected significant TBBPA levels in prenatal environments, including cord blood, raising concerns about developmental impacts. Using zebrafish as a model, this study addresses critical gaps in understanding how developmental TBBPA exposures perturb regulatory pathways that govern dorsoventral patterning.

View Article and Find Full Text PDF

PFGA12 ameliorates Hypoxic-Ischemic brain injury by directly regulating PRDX1 and inhibiting ferroptosis.

Biochem Pharmacol

September 2025

Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China; Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China. El

Hypoxic-ischemic brain damage (HIBD) is a severe condition leading to extensive neuronal loss and functional impairments, representing a significant challenge in neonatal care. PFGA12, a peptide derived from fibrinogen alpha chain (FGA), which is notably downregulated in the umbilical cord blood of hypoxic-ischemic encephalopathy (HIE) infants. We demonstrate that PFGA12 significantly enhances cell viability and mitigates oxygen-glucose deprivation/reperfusion (OGD/R)-induced neuronal cell death.

View Article and Find Full Text PDF

Human cord blood (CB) myeloid progenitor reprogramming to a high-fidelity human induced pluripotent stem cell (hiPSC) state can be achieved using non-integrating episomal vectors and stromal signals. These conventional, primed CB-hiPSC lines can subsequently be chemically reverted with high efficiencies to a blastomere-like Tankyrase/PARP Inhibitor-Regulated Naive Stem Cell (TIRN-SC) state with functional totipotency. PARP-regulated TIRN-SCs are human stem cells with high epigenetic plasticity, stable epigenomic imprints, and have greater differentiation potency than conventional, lineage-primed hiPSCs.

View Article and Find Full Text PDF