Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bay laurel (Laurus nobilis) essential oil is known for its antimicrobial, anti-inflammatory, and antioxidant properties. This study examined the effects of L. nobilis oil (LN) on Nile tilapia (Oreochromis niloticus) under cold stress conditions (16°C). Tilapia (initial weight, 5.02 ± 0.02 g) were acclimatized to 16°C for 14 days before being fed diets containing 0, 0.5, 1.0, 1.5, 2.0, and 2.5 g/kg LN oil for 84 days. The 1.5 g/kg LN oil group exhibited the highest final body weight and weight gain (p ≤ 0.05), while survival rates peaked at 1 g/kg. Biometric indices and feed efficiency were significantly enhanced, particularly at 1.5 g/kg (p ≤ 0.05). Histological analysis revealed improved intestinal and hepatic structures in LN-supplemented groups, although mild alterations were observed at 2.0 and 2.5 g/kg. Blood biochemical analysis showed increased total protein and reduced cholesterol in supplemented groups. Immune responses, including serum lysozyme activity and bacterial inhibition, were significantly enhanced at 1.5 g/kg or higher (p ≤ 0.05). Antioxidant enzyme activities, including superoxide dismutase (SOD) and catalase (CAT), increased (p ≤ 0.05) with LN oil supplementation, while malondialdehyde (MDA) levels decreased, indicating reduced oxidative stress. Gene expression analysis demonstrated increased insulin-like growth factor 1 and glucose transporter 4 levels with 1.5 g/kg LN oil, and tumor necrosis factor-alpha expression decreased at higher dosages. Dietary LN oil, particularly at 1.5 g/kg, enhances growth, immunity, and antioxidant defense in Nile tilapia under cold stress. Future studies should optimize dosages and explore broader applications across species and conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jpn.14107DOI Listing

Publication Analysis

Top Keywords

nile tilapia
12
essential oil
8
bay laurel
8
laurel laurus
8
laurus nobilis
8
enhances growth
8
growth immunity
8
tilapia oreochromis
8
oreochromis niloticus
8
cold stress
8

Similar Publications

This study aimed to develop an acellular dermal matrix derived from tilapia skin and evaluate its potential as a bioscaffold for skin wound repair. Structural and compositional changes before and after decellularisation were assessed through histological staining, electron microscopy and immunological analysis. The matrix exhibited low immunogenicity, preserved extracellular matrix architecture and retained key bioactive components.

View Article and Find Full Text PDF

Trophic guilds of cichlid species in a floodplain river.

J Fish Biol

September 2025

Department of Fisheries and Aquatic Sciences, Cross River University of Technology, PMB 102 Obubra Campus, Calabar, Nigeria.

Floodplains support a diverse cichlid community, yet the trophic ecology of these species is not well understood. This study investigated the dietary niches and trophic guilds of cichlid species in the Cross River floodplain. A total of 480 fish samples from eight cichlid species were collected from three locations (Itu, Obubra, Ikom) over 6 months (October 2019-March 2020).

View Article and Find Full Text PDF

This study evaluated how dietary black seed oil (Nigella sativa L.) against the diazinon waterborne toxicity on Nile tilapia (Oreochromis niloticus), focusing on growth performance, hematological and biochemical parameters as well as oxidative stress markers and histological changes. A 40-day feeding trial was carried out using four experimental groups: Group 1 (control group), Group 2 (N.

View Article and Find Full Text PDF

Dipeptidyl-peptidase (DPP)-IV inhibition by penultimate N-terminus Pro-containing peptides is a promising strategy for Type 2 diabetes (T2D) management, as it prevents the degradation of incretin hormones (DPP-IV substrates) like glucagon-like peptide-1 (GLP-1), thereby prolonging their half-life. However, the stability and bio-accessibility of these peptides are crucial to their efficacy in orally administered therapeutics. We previously identified LPCL and TPFLPDE peptides from tilapia viscera by-products hydrolysates, which exhibited significant DPP-IV inhibition in vitro and in situ while effectively preserving active GLP-1 levels after 2 h treatment in STC-1 cells under basal glucose conditions.

View Article and Find Full Text PDF

In mammals, cholesterol accumulation in tissues often results in health damage, such as oxidative stress. In contrast, the adverse effects of cholesterol accumulation on the physiological health of fish remain largely unexplored. The present study investigated the impacts of cholesterol accumulation on oxidative stress and the potential mechanisms involved in Nile tilapia ().

View Article and Find Full Text PDF