A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Impact of infusion conditions and anesthesia on CSF tracer dynamics in mouse brain. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tracer imaging has been instrumental in mapping the brain's solute transport pathways facilitated by cerebrospinal fluid (CSF) flow. However, the impact of tracer infusion parameters on CSF flow remains incompletely understood. This study evaluated the influence of infusion location, rate, and anesthetic regimens on tracer transport using dynamic contrast-enhanced MRI with Gd-DTPA as a CSF tracer. Infusion rate effects were assessed by administering Gd-DTPA into the cisterna magna (ICM) at two rates under isoflurane anesthesia. Anesthetic effects were evaluated by comparing transport patterns between isoflurane and ketamine/xylazine (K/X) anesthesia at the slower rate. Gd-DTPA transport was also examined after lateral ventricle (ICV) infusion, the primary site of CSF production. The results demonstrate that, besides anesthesia, both the location and rate of infusion substantially affected solute transport within the brain. ICV infusion led to rapid, extensive transport into deep brain regions, while slower ICM infusion resulted in more pronounced transport to dorsal brain regions. Cross-correlation and hierarchical clustering analyses of region-specific Gd-DTPA signal time courses revealed that ICM infusion facilitated transport along periarterial spaces, while ICV infusion favored transport across the ventricular-parenchymal interface. These findings underscore the importance of experimental conditions in influencing tracer kinetics and spatial distribution in the brain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11785030PMC
http://dx.doi.org/10.1101/2025.01.21.634133DOI Listing

Publication Analysis

Top Keywords

icv infusion
12
transport
9
infusion
9
csf tracer
8
solute transport
8
csf flow
8
tracer infusion
8
location rate
8
brain regions
8
icm infusion
8

Similar Publications