Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Bacterial infections have long been a formidable challenge in global public health, further compounded by the emergence of drug-resistant bacteria resulting from the overuse and misuse of antibiotics. Intelligent antibacterial strategies are garnering escalating attention and concern due to their ability to accurately recognize bacterial infections, efficiently eliminate pathogens, and timely monitor infection end points in order to mitigate the adverse effects of excessive treatment on normal tissues. Hence, in this study, we developed a multifunctional antibacterial nanohydrogel that exhibited bacteria-triggered fluorescence activity, serving as a fluorescent indicator for bacterial infections. Moreover, the bacteria can induce the release of Fe, photosensitizers, and antibiotics within the nanohydrogel, thereby exerting synergistic antibacterial effects through chemodynamic and photodynamic treatment, glutathione depletion, and antibiotics. Consequently, the nanohydrogel demonstrated remarkable efficacy in eradicating bacteria within wounds while significantly enhancing wound healing. The construction strategy and design principles of the antibacterial nanohydrogel broaden the horizons of clinical photodynamic antibacterial therapy, offering a novel perspective for the advancement of integrated theranostic approaches against bacterial infections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.4c06251 | DOI Listing |