Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Water used in post-harvest handling and processing operations is an important risk factor for microbiological cross-contamination of fruits, vegetables and herbs (FVH). Industrial data indicated that the frozen FVH sector is characterised by operational cycles between 8 and 120 h, variable product volumes and no control of the temperature of process water. Intervention strategies were limited to the use of water disinfection treatments such as peroxyacetic acid and hydrogen peroxide. Chlorine-based disinfectants were not used, and water replenishment was not observed within studied industries. The industrial data, which included 13 scenarios, were used to develop a guidance for a water management plan (WMP) for the frozen FVH sector. A WMP aims to maintain the fit-for-purpose microbiological quality of the process water and consists of: (a) identification of microbial hazards and hazardous events linked to process water; (b) establishment of the relationship between microbiological and physico-chemical parameters; (c) description of preventive measures; (d) description of intervention measures, including their validation, operational monitoring and verification; and (e) record keeping and trend analysis. A predictive model was used to simulate water management outcomes, highlighting the need for water disinfection treatments to maintain the microbiological quality of the process water and the added value of water replenishment. Relying solely on water replenishment (at realistic feasible rates) does not avoid microbial accumulation in the water. Operational monitoring of the physico-chemical parameters ensures that the disinfection systems are operating effectively. Verification includes microbiological analysis of the process water linked to the operational monitoring outcomes of physico-chemical parameters. Food business operators should set up and validate a tailored WMP to identify physico-chemical parameters, as well as microbial indicators and their threshold levels as performance standards for maintaining the fit-for-purpose microbiological quality of the process water during post-harvest handling and processing operations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11780613PMC
http://dx.doi.org/10.2903/j.efsa.2025.9172DOI Listing

Publication Analysis

Top Keywords

process water
28
water
17
physico-chemical parameters
16
water post-harvest
12
post-harvest handling
12
handling processing
12
processing operations
12
frozen fvh
12
water management
12
water replenishment
12

Similar Publications

Green synthesis of silver nanoparticles using Ocimum sanctum for efficient Congo red dye removal: a response surface methodology approach.

Environ Monit Assess

September 2025

Department of Civil Engineering, Faculty of Engineering, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari Post, Coimbatore, Tamil Nadu, 641021, India.

Synthetic dyes, such as Congo red (CR), pose serious threats to human health and aquatic ecosystems because of their carcinogenicity and resistance to degradation, necessitating the development of efficient and eco-friendly remediation strategies. In this study, silver nanoparticles (AgNPs) were synthesized via a green method using Ocimum sanctum (holy basil) leaf extract and applied for CR dye removal from aqueous solutions. The adsorption process was optimized using response surface methodology (RSM) based on Box-Behnken design (BBD), evaluating the influence of key parameters including pH, AgNP dosage, initial dye concentration, contact time, and temperature.

View Article and Find Full Text PDF

Energy deficiency selects crowded live epithelial cells for extrusion.

Nature

September 2025

The Randall Centre for Cell & Molecular Biophysics, School of Basic & Medical Biosciences, King's College London, London, UK.

Epithelial cells work collectively to provide a protective barrier, yet they turn over rapidly through cell division and death. If the numbers of dividing and dying cells do not match, the barrier can vanish, or tumours can form. Mechanical forces through the stretch-activated ion channel Piezo1 link both of the processes; stretch promotes cell division, whereas crowding triggers live cells to extrude and then die.

View Article and Find Full Text PDF

Rapid sand filtration is typically used at water treatment plants to remove the fine suspended solid particles from the raw water. Backwashing of exhausted filter beds inevitably generates large volume of filtration sludge in water treatment plants. In this study, filtration sludge is collected, dried and crushed to powder, then passed through 90 µm sieve to get powdered filtration sludge (PFS) which is then characterized and utilized without energy intensive process of calcination.

View Article and Find Full Text PDF

Activating the Oxygen Evolution Performance of NiCuFe by Phosphorus Doping.

Langmuir

September 2025

College of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China.

The oxygen evolution reaction (OER), a critical yet kinetically sluggish process in electrochemical water splitting, severely limits efficient hydrogen production. Herein, a simple one-step dynamic hydrogen bubble templated electrodeposition technique is used to prepare a self-supported 3D porous NiCuFeP catalyst with outstanding OER performance. In 1.

View Article and Find Full Text PDF

Food production from air: gas precision fermentation with hydrogen-oxidising bacteria.

Trends Biotechnol

September 2025

Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, 9747 AG, The Netherlands; Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW72AZ, UK; Bezos Centre for Sustainable Protein, Imperial Colleg

The breach of six planetary boundaries highlights the need for sustainable food production. Aerobic hydrogen-oxidising bacteria (HOBs) convert atmospheric CO and green hydrogen (H) into biomass via gas fermentation, a process already used for food-grade single-cell protein production. This approach enables a supply chain independent of agriculture, requiring minimal land and water, with potential for carbon-neutral production and carbon capture.

View Article and Find Full Text PDF