Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We report the synthesis of dianionic OCO-supported NHC and MIC complexes of molybdenum and tungsten with the general formula (OCO)MO (OCO = bis-phenolate benzimidazolylidene M = Mo (1-Mo), bis-phenolate triazolylidene M = Mo (2-Mo), M = W (2-W) and bis-phenolate imidazolylidene, M = Mo (3-Mo), W (3-W)). These complexes are tested in the catalytic deoxygenation of nitroarenes using pinacol as a sacrificial oxygen atom acceptor/reducing agent to examine the influence of the carbene and the metal centre in this transformation. The results show that the molybdenum-based triazolylidene complex 2-Mo is by far the most active catalyst, and TOFs of up to 270 h are observed, while the tungsten analogues are basically inactive. Mechanistic studies suggest that the superiority of the triazolylidene-based complex 2-Mo is a result of a highly stable metal carbene bond, strongly exceeding the stability of the other NHC complexes 1-Mo and 3-Mo. This is proven by the structural isolation of a triazolylidene pinacolate complex (5-Mo) that can be thermally converted to a μ-oxodimolybdenum(V) complex 7-Mo. The latter complex is very oxophilic and stoichiometrically deoxygenates nitro- and nitrosoarenes at room temperature. In contrast, azoarenes are not reductively cleaved by 7-Mo, suggesting direct deoxygenation of the nitroarenes to the corresponding anilines with nitrosoarenes as intermediates. In summary, this work showcases the superior influence of MIC donors on the catalytic properties of early transition metal complexes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11771132PMC
http://dx.doi.org/10.1039/d4qi02392gDOI Listing

Publication Analysis

Top Keywords

deoxygenation nitroarenes
8
complex 2-mo
8
complexes
5
complex
5
probing influence
4
influence imidazolylidene-
4
imidazolylidene- triazolylidene-based
4
triazolylidene-based carbenes
4
carbenes catalytic
4
catalytic potential
4

Similar Publications

The Outstanding Ambiphilicity of Trialkylstibines among Trialkylpnictines: Power for Stepwise Deoxygenation and N-N Coupling of Nitroarenes.

J Am Chem Soc

March 2025

Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610065, China.

The ongoing discovery of highly reactive ambiphilic main-group species has significantly advanced the development of main-group chemistry, particularly in the realms of small molecule activation and catalysis. Theoretically, compounds featuring smaller HOMO-LUMO gaps gain stronger ambiphilicity and higher reactivity. In this work, we fundamentally demonstrate that MeSb holds the smallest HOMO-LUMO gap among trimethylpnictines, indicating its outstanding ambiphilicity.

View Article and Find Full Text PDF

Diboron reagents are known for their ability to promote the deoxygenation of amine or pyridine oxides, nitroarenes, and nitrones through the formation of B-O-B bonds. In this study, we have investigated the potential of diboron reagents to induce N-N bond cleavage in hydrazines, N-nitrosamines and azides. Our findings show that the combination of Bnep as diboron source and KOMe as a Lewis base can effectively promote the N-N cleavage of a wide variety of substrates.

View Article and Find Full Text PDF

We report the synthesis of dianionic OCO-supported NHC and MIC complexes of molybdenum and tungsten with the general formula (OCO)MO (OCO = bis-phenolate benzimidazolylidene M = Mo (1-Mo), bis-phenolate triazolylidene M = Mo (2-Mo), M = W (2-W) and bis-phenolate imidazolylidene, M = Mo (3-Mo), W (3-W)). These complexes are tested in the catalytic deoxygenation of nitroarenes using pinacol as a sacrificial oxygen atom acceptor/reducing agent to examine the influence of the carbene and the metal centre in this transformation. The results show that the molybdenum-based triazolylidene complex 2-Mo is by far the most active catalyst, and TOFs of up to 270 h are observed, while the tungsten analogues are basically inactive.

View Article and Find Full Text PDF

Oxidatively generated phosphine radical cations are reactive intermediates that can be used for the generation of carbon and heteroatom centered radicals via deoxygenation processes. Such P-radical cations can readily be generated via single electron transfer oxidation using a redox catalyst. Cheap and commercially available nitroarenes are ideal nitrogen sources for the construction of organic amines and N-containing heterocycles.

View Article and Find Full Text PDF

Bisgermylene-Stabilized Stannylone: Catalytic Reduction of Nitrous Oxide and Nitro Compounds via Element-Ligand Cooperativity.

J Am Chem Soc

July 2024

State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.

This study describes the synthesis, structural characterization, and catalytic application of a bis(germylene)-stabilized stannylone (). The reduction of digermylated stannylene () with 2.2 equiv of potassium graphite (KC) leads to the formation of stannylone as a green solid in 78% yield.

View Article and Find Full Text PDF