Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Oxygen consumption by oceanic microbes can predict respiration (CO production) but requires an assumed respiratory quotient (RQ; ΔO/ΔCO). Measured apparent RQs (ARQs) can be impacted by various processes, including nitrification and changes in dissolved organic matter (DOM) composition, leading to discrepancies between ARQ and actual RQ. In DOM remineralization experiments conducted in the eastern North Atlantic Ocean, ARQs averaged 1.39 ± 0.14, similar to predictions for complete consumption of plankton biomass. DOM removed with an elevated nominal oxidation state (i.e., more oxidized DOM), as detected by liquid chromatography-tandem mass spectrometry, coincided with increased hydrolyzable amino acid removal, increased ARQs and bacterioplankton respiration (BR), and a decreased bacterioplankton growth efficiency (BGE). Across experiments, evidence emerged that nitrification and DOM partial oxidation, driven in part by bacterioplankton members of OM43, SAR92 and Rhodobacteraceae, can elevate BR relative to bacterioplankton consumption of plankton-derived carbon. These rare synoptic measurements of interrelated variables reveal complex biochemical and cellular processes underlying variability in large-scale CO production estimates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11779884PMC
http://dx.doi.org/10.1038/s42003-025-07574-2DOI Listing

Publication Analysis

Top Keywords

oxidation state
8
dissolved organic
8
organic matter
8
bacterioplankton respiration
8
growth efficiency
8
bacterioplankton
5
dom
5
state bioavailable
4
bioavailable dissolved
4
matter influences
4

Similar Publications

A novel aggregation-induced emission (AIE) system with superior performance was successfully developed through local chemical modification from thiophene to thiophene sulfone. This approach, leveraging easily accessible tetraphenylthiophene precursors, dramatically enhances the photophysical properties in a simple oxidation step. Notably, the representative 2,3,4,5-tetraphenylthiophene sulfone (3c) demonstrates remarkable solid-state emission characteristics with a fluorescence quantum yield of 72% and an AIE factor of 240, substantially outperforming its thiophene analog.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) are transformative platforms for heterogeneous catalysis, but distinguishing atomically dispersed metal sites from subnanometric clusters remains a major challenge. This often demands the integration of multiple characterization techniques, many of which either lack the resolving power to distinguish active sites from their surrounding environments (e.g.

View Article and Find Full Text PDF

Is high specific surface area essential for anode catalyst supports in proton exchange membrane water electrolysis?

Mater Horiz

September 2025

New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.

Dispersing iridium onto high-specific-surface-area supports is a widely adopted strategy to maximize iridium utilization in anode catalysts of proton exchange membrane water electrolysis (PEMWE). However, here we demonstrate that the overall cell performance, including initial efficiency and long-term stability, does not benefit from the typical high specific surface area of catalyst supports. The conventional understanding that high iridium utilization on high-specific-surface-area supports increases activity holds only in aqueous electrolytes, while under the typical working conditions of PEMWE, the mass transport within the anode catalyst layers plays a more significant role in the overall performance.

View Article and Find Full Text PDF

Polyphenols, rich in phenolic structures, are widely found in plants and known for disturbing the cellular oxidative stress and regulating the signal pathways of tumor proliferation and metastasis, making them valuable in cancer therapy. Polyphenols display high adherence due to the presence of phenolic hydroxyl groups, which enables the formation of covalent and non-covalent interactions with different materials. However, nonspecific adhesion of polyphenols carries significant risks in applications as polyphenols might adhere to proteins and polysaccharides in the bloodstream or gastrointestinal tract, leading to thrombosis and lithiasis.

View Article and Find Full Text PDF

Esophageal cancer is a major cause of cancer-related death, often preceded with chronic inflammation and injuries. The NFκB/IKKβ pathway plays a central role in inflammation, yet its role in early esophageal carcinogenesis remains unclear. This study investigated the role of epithelial IKKβ in early esophageal carcinogenesis.

View Article and Find Full Text PDF