A network-enabled pipeline for gene discovery and validation in non-model plant species.

Cell Rep Methods

MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA; Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA. Electronic address:

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Identifying key regulators of important genes in non-model crop species is challenging due to limited multi-omics resources. To address this, we introduce the network-enabled gene discovery pipeline NEEDLE, a user-friendly tool that systematically generates coexpression gene network modules, measures gene connectivity, and establishes network hierarchy to pinpoint key transcriptional regulators from dynamic transcriptome datasets. After validating its accuracy with two independent datasets, we applied NEEDLE to identify transcription factors (TFs) regulating the expression of cellulose synthase-like F6 (CSLF6), a crucial cell wall biosynthetic gene, in Brachypodium and sorghum. Our analyses uncover regulators of CSLF6 and also shed light on the evolutionary conservation or divergence of gene regulatory elements among grass species. These results highlight NEEDLE's capability to provide biologically relevant TF predictions and demonstrate its value for non-model plant species with dynamic transcriptome datasets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11840947PMC
http://dx.doi.org/10.1016/j.crmeth.2024.100963DOI Listing

Publication Analysis

Top Keywords

gene discovery
8
non-model plant
8
plant species
8
dynamic transcriptome
8
transcriptome datasets
8
gene
6
network-enabled pipeline
4
pipeline gene
4
discovery validation
4
validation non-model
4

Similar Publications

Rheumatoid arthritis (RA) is a chronic autoimmune disease in which dysregulated interferon regulatory factor 5 (IRF5) may amplify pro-inflammatory pathways; prior genetic studies of IRF5 single-nucleotide variants (SNVs) in RA are inconsistent across populations and have not included mestizo Mexicans or evaluated rs59110799 in RA. We aimed to test whether four IRF5 SNVs (rs2004640G/T, rs2070197T/C, rs10954213G/A, rs59110799G/T) confer susceptibility to RA in women from Central Mexico. In a case-control study of 239 women with RA and 231 female controls (all self-identified Mexican-Mestizos, ≥3 generations), genotyping was performed by real-time PCR with TaqMan® probes; 80% of samples were duplicated (100% concordance) and control genotypes conformed to Hardy-Weinberg equilibrium.

View Article and Find Full Text PDF

Legumes are essential for agriculture and food security. Biotic and abiotic stresses pose significant challenges to legume production, lowering productivity levels. Most legumes must be genetically improved by introducing alleles that give pest and disease resistance, abiotic stress adaptability, and high yield potential.

View Article and Find Full Text PDF

Bacterial leaf streak (BLS), caused by pv. (), has recently emerged as a significant threat to wheat production in the Northern Great Plains region of the US. Deploying resistant cultivars is an economical and practical method of controlling BLS.

View Article and Find Full Text PDF

Ultra-high field strength electroporation enables efficient DNA transformation and genome editing in nontuberculous mycobacteria.

Microbiol Spectr

September 2025

Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.

Efficient DNA delivery is essential for genetic manipulation of mycobacteria and for dissecting their physiology, pathogenesis, and drug resistance. Although electroporation enables transformation efficiencies exceeding 10⁵ CFU per µg DNA in and , it remains highly inefficient in many nontuberculous mycobacteria (NTM), including . Here, we discovered that NTM such as exhibit exceptional tolerance to ultra-high electric field strengths and that hypertonic preconditioning partially protects cells from electroporation-induced damage.

View Article and Find Full Text PDF

Drug-induced hepatotoxicity (DIH), characterized by diverse phenotypes and complex mechanisms, remains a critical challenge in drug discovery. To systematically decode this diversity and complexity, we propose a multi-dimensional computational framework integrating molecular structure analysis with disease pathogenesis exploration, focusing on drug-induced intrahepatic cholestasis (DIIC) as a representative DIH subtype. First, a graph-based modularity maximization algorithm identified DIIC risk genes, forming a DIIC module and eight disease pathogenesis clusters.

View Article and Find Full Text PDF