Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children, presenting with heterogeneous clinical and molecular subtypes. While gene fusions are predominantly associated with alveolar RMS, spindle cell RMS, especially congenital and intraosseous variants, are also linked to specific gene fusions. Furthermore, recently, FGFR1 kinase-driven RMSs were published. Here, we describe a case of RMS harboring an EWSR1::NF2 gene fusion, a deletion-driven genetic alteration that has not been previously documented in RMS or other soft tissue tumors. The patient was a 29-year-old female who presented with a lobulated ankle mass. Histologic examination revealed a malignant round cell tumor extensively infiltrating large nerve bundles. Immunohistochemical analysis demonstrated rhabdomyoblastic differentiation, consistent with rhabdomyosarcoma. While some areas showed features resembling the sclerosing and others the embryonal subtypes, the overall findings were considered unclassifiable. Targeted RNA sequencing revealed EWSR1(exon 9):: NF2(exon 7) gene fusion, which was confirmed on whole genome and targeted DNA sequencing. The latter did not yield specific diagnostic insights but revealed mutations in TSC2 (p.T1330M), ZFHX3 (p.A301T), and a NOTCH3 rearrangement, all of unknown oncogenic significance. MYC gene amplification was detected, but there was no evidence of chromosome 8 amplification or chromosome 11p15 loss of heterozygosity. Whole genome sequencing revealed a low tumor mutation burden (2.69/Mb) and showed no other significant potentially oncogenic events. DNA methylation studies using dimensionality reduction and unsupervised clustering placed the case within the embryonal RMS subtype. Although the absence of other oncogenic driver alterations suggests that the fusion may have played a pivotal role in pathogenesis, we cannot exclude the possibility that it represents a passenger alteration rather than a true driver mutation. If the former is true, further studies will be required to determine whether this fusion represents a novel RMS subtype or a rare driver in existing subtypes of RMS.

Download full-text PDF

Source
http://dx.doi.org/10.1002/gcc.70025DOI Listing

Publication Analysis

Top Keywords

gene fusion
12
ewsr1nf2 gene
8
rms
8
soft tissue
8
gene fusions
8
sequencing revealed
8
rms subtype
8
gene
6
fusion
5
rhabdomyosarcoma ewsr1nf2
4

Similar Publications

Insufficient telomeric DNA damage response promotes chromosomal instability in aged oocytes.

Sci Bull (Beijing)

August 2025

MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen Univ

Increased chromosomal instability impairs oocyte quality, contributing to female reproductive aging. The telomeric DNA damage response (DDR) is essential for genomic stability; however, how oocytes respond to telomeric damage remains elusive. Here, we observed that aged human germinal vesicle (GV) oocytes accumulated telomeric DNA damage.

View Article and Find Full Text PDF

Advances in nanopore direct RNA sequencing and its impact on biological research.

Biotechnol Adv

September 2025

Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, China Jiliang University, Hangzhou 310018, China. Electronic address:

Nanopore direct RNA sequencing (DRS) is a transformative technology that enables full-length, single-molecule sequencing of native RNA, capturing transcript isoforms and preserving epitranscriptomic modifications without cDNA conversion. This review outlines key advances in DRS, including optimized protocols for mRNA, rRNA, tRNA, circRNA, and viral RNA, as well as analytical tools for isoform quantification, poly(A) tail measurement, fusion transcript identification, and base modification profiling. We highlight how DRS has redefined transcriptomic studies across diverse systems-from uncovering novel transcripts and alternative splicing events in cancer, plants, and parasites to enabling the direct detection of m6A, m5C, pseudouridine, and RNA editing events.

View Article and Find Full Text PDF

Clinicopathological features of dermal clear cell sarcoma: A series of 13 cases.

Pathol Res Pract

September 2025

Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China. Electronic address:

Background: Dermal clear cell sarcoma (DCCS) is a rare malignant mesenchymal neoplasm. Owing to the overlaps in its morphological and immunophenotypic profiles with a broad spectrum of tumors exhibiting melanocytic differentiation, it is frequently misdiagnosed as other tumor entities in clinical practice. By systematically analyzing the clinicopathological characteristics, immunophenotypic features, and molecular biological properties of DCCS, this study intends to further enhance pathologists' understanding of this disease and provide a valuable reference for its accurate diagnosis.

View Article and Find Full Text PDF

Human parainfluenza virus 2 (HPIV-2) and human parainfluenza virus 4 (HPIV-4) are significant but underappreciated respiratory pathogens, particularly among high-risk populations including children, the elderly, and immunocompromised individuals. In this study, we sequenced 101 HPIV-2 and HPIV-4 genomes from respiratory samples collected in western Washington State and performed comprehensive evolutionary analyses using both new and publicly available sequences. Phylogenetic and phylodynamic analyses revealed that both HPIV-2 and HPIV-4 evolve at significantly faster rates compared to mumps virus, a reference human orthorubulavirus.

View Article and Find Full Text PDF

Deltaviruses are subviral agents of animals, which, in humans, require a hepadnavirus helper for transmission. The absence of deltavirus-like endogenous viral elements (δEVEs) has prevented an understanding of their evolution in deep time. By screening the representative genomes of all metazoans for endogenous delta antigen-like sequences, we report the discovery of 13 δEVEs in the genomes of five species of termites.

View Article and Find Full Text PDF