Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Listeriolysin O (LLO) is a potent membrane-damaging pore-forming toxin (PFT) secreted by the bacterial pathogen . LLO belongs to the family of cholesterol-dependent cytolysins (CDCs), which specifically target cholesterol-containing cell membranes to form oligomeric pores and induce membrane damage. CDCs, including LLO, harbor designated pore-forming motifs. In the soluble monomeric state, these motifs are present as helical segments (two transmembrane helices (TMHs); TMH1 and TMH2), and in the course of oligomeric pore formation, they convert into transmembrane β-hairpins to form the β-barrel scaffold of the CDC pores. Despite their well-established role in forming the β-barrel pore scaffold, precise structural implications of the two distinct TMH motifs and their membrane-insertion mechanism still remain obscure. Here, we show that the two TMH motifs of LLO contribute differently to maintaining the structural integrity of the toxin. While the deletion of TMH1 imposed a more serious defect, truncation of TMH2 was found to have a less severe effect on the structural integrity. Despite showing membrane-binding and oligomerization ability, the TMH2-deleted LLO variant displayed drastically abrogated pore-forming activity, presumably due to compromised membrane-insertion efficacy of the pore-forming TMH motifs. When probed for the membrane-insertion mechanism, we found slower membrane-insertion kinetics for TMH2 than for TMH1. Interestingly, deletion of TMH2 arrested membrane insertion of TMH1, thus suggesting a stringent cooperation between the two TMH motifs in regulating the pore-formation mechanism of LLO. Taken together, our study provides new mechanistic insights regarding the membrane-damaging action of LLO, in the CDC family of PFTs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biochem.4c00592DOI Listing

Publication Analysis

Top Keywords

tmh motifs
16
β-barrel pore
8
pore formation
8
membrane-insertion mechanism
8
structural integrity
8
motifs
7
llo
7
pore-forming
5
mechanistic cooperation
4
cooperation pore-forming
4

Similar Publications

Unique phosphorylation 'barcodes' installed in different regions of an active seven-transmembrane receptor by different G-protein-coupled receptor (GPCR) kinases (GRKs) have been proposed to promote distinct cellular outcomes, but it is unclear whether or how arrestins differentially engage these barcodes. Here, to address this, we developed an antigen-binding fragment (Fab7) that recognizes both active arrestin2 (β-arrestin1) and arrestin3 (β-arrestin2) without interacting with bound receptor polypeptides. We used Fab7 to determine the structures of both arrestins in complex with atypical chemokine receptor 3 (ACKR3) phosphorylated in different regions of its C-terminal tail by either GRK2 or GRK5 (ref.

View Article and Find Full Text PDF

Voltage-sensor domains (VSDs), found in many voltage-sensitive ion channels and enzymes, are composed of four transmembrane helices (TMHs), including the atypical, highly positively charged S4 helix. VSDs are cotranslationally inserted into the membrane, raising the question of how the highly charged S4 helix is integrated into the lipid bilayer as it exits the ribosome. Here, we have used force profile analysis (FPA) to follow the cotranslational insertion of the six-TMH KvAP voltage-sensitive ion channel into the inner membrane.

View Article and Find Full Text PDF

LYSET is a recently identified Golgi transmembrane (TM) protein, and inactivating mutations in the gene phenocopy mucolipidosis II (MLII), the lysosomal storage disease caused by loss of function of GlcNAc-1-phosphotransferase αβ (GNPTαβ), which tags lysosomal hydrolases with the mannose 6-phosphate (M6P) tag for delivery to lysosomes. It is conceivable that LYSET facilitates integration of both hydrophilic TM helices (TMHs) of GNPTαβ and retain the latter in the Golgi, although this has only been directly demonstrated for the N-terminal TMH wherein a membrane-stabilized GNPTαβ variant restores lysosomal function in cells lacking LYSET. Here we show that the C-terminal TMH of GNPTαβ also contributes to LYSET-mediated Golgi retention.

View Article and Find Full Text PDF

The multidrug transporter P-glycoprotein (P-gp), is pivotal in exporting various chemically dissimilar amphipathic compounds including anti-cancer drugs, thus causing multidrug resistance during cancer treatment. P-gp is composed of two transmembrane domains (TMDs), each containing six homologous transmembrane helices (TMHs). Among these helices, TMH 6 and 12 align oppositely, lining a drug-binding pocket in the transmembrane region which acts as a pathway for drug efflux.

View Article and Find Full Text PDF

Listeriolysin O (LLO) is a potent membrane-damaging pore-forming toxin (PFT) secreted by the bacterial pathogen . LLO belongs to the family of cholesterol-dependent cytolysins (CDCs), which specifically target cholesterol-containing cell membranes to form oligomeric pores and induce membrane damage. CDCs, including LLO, harbor designated pore-forming motifs.

View Article and Find Full Text PDF