98%
921
2 minutes
20
The prediction of survival outcomes is a key factor in making decisions for prostate cancer (PCa) treatment. Advances in computer-based technologies have increased the role of machine learning (ML) methods in predicting cancer prognosis. Due to the various effective treatments available for each non-linear landscape of PCa, the integration of ML can help offer tailored treatment strategies and precision medicine approaches, thus improving survival in patients with PCa. There has been an upsurge of studies utilizing ML to predict the survival of these patients using complex datasets, including patient and tumor features, radiographic data, and population-based databases. This review aims to explore the evolving role of ML in predicting survival outcomes associated with PCa. Specifically, we will focus on the applications of ML in forecasting biochemical recurrence-free, progression to castration-resistance-free, metastasis-free, and overall survivals. Additionally, we will suggest areas in need of further research in the future to enhance the utility of ML for a more clinically-utilizable PCa prognosis prediction and treatment optimization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757104 | PMC |
http://dx.doi.org/10.3389/fonc.2024.1502629 | DOI Listing |
J Eval Clin Pract
September 2025
Department of Orthopedics and Traumatology, Medical Faculty, University of Health Sciences, Antalya, Turkey.
Aims And Objective: The field of medical statistics has experienced significant advancements driven by integrating innovative statistical methodologies. This study aims to conduct a comprehensive analysis to explore current trends, influential research areas, and future directions in medical statistics.
Methods: This paper maps the evolution of statistical methods used in medical research based on 4,919 relevant publications retrieved from the Web of Science.
J Magn Reson Imaging
September 2025
Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas, USA.
Background: Cerebrovascular reactivity reflects changes in cerebral blood flow in response to an acute stimulus and is reflective of the brain's ability to match blood flow to demand. Functional MRI with a breath-hold task can be used to elicit this vasoactive response, but data validity hinges on subject compliance. Determining breath-hold compliance often requires external monitoring equipment.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
May 2025
Department of Geriatric Pulmonary and Critical Care Medicine, Xiangya Hospital, Central South University; National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008.
Objectives: Non-small cell lung cancer (NSCLC) is associated with poor prognosis, with 30% of patients diagnosed at an advanced stage. Mutations in the and genes are important prognostic factors for NSCLC, and targeted therapies can significantly improve survival in these patients. Although tissue biopsy remains the gold standard for detecting gene mutations, it has limitations, including invasiveness, sampling errors due to tumor heterogeneity, and poor reproducibility.
View Article and Find Full Text PDFDermatitis
September 2025
From the Department of Dermatology, Venereology and Leprology, All India Institute of Medical Sciences (AIIMS), Bhopal, India.
Contact dermatitis (CD), which includes both allergic CD and irritant CD, is a common inflammatory condition that can pose significant diagnostic challenges. Although patch testing is the gold standard for identifying causative allergens for allergic contact dermatitis (ACD), it is time-consuming, subjective, and requires expert interpretation. Recent advancements in artificial intelligence (AI), particularly in machine learning (ML) and deep learning, have shown promise in improving the accuracy, efficiency, and accessibility of CD diagnosis and management.
View Article and Find Full Text PDF