98%
921
2 minutes
20
Different application domains impose diverse and often conflicting requirements on the optoelectronic performance of metal oxide semiconductor (MOS) thin-film transistors (TFTs). These varying demands present substantial challenges in the selection of TFT materials and the optimization of device performance. This study begins by examining three primary application areas for TFTs: display drivers, photodetectors, and optoelectronic synapses. A comparative analysis of the optoelectronic properties is conducted among various MOS TFTs fabricated by magnetron sputtering, including indium-gallium-zinc-oxide (IGZO, In/Ga/Zn = 1:2:1), indium-gallium-oxide (IGO, In/Ga = 1:1), indium-zinc-oxide (IZO, In/Zn = 1:1), indium oxide (InO), and zinc oxide (ZnO). The investigation reveals the significant impact of material selection on key performance metrics essential for these applications, such as photoresponse, the decay rate of photocurrent (), and negative bias illumination stress (NBIS). Additionally, a comprehensive summary of the applicable domains for each type of TFT is provided. The study also explores the correlation between activation energy () and TFT performance, indicating that higher is associated with a stronger persistent photoconductivity (PPC) effect but poorer stability. Furthermore, the content of oxygen vacancy () shows a positive correlation with the decay rate of . Lastly, the photogenerated carrier lifetime (τ) is derived and compared among the five MOS materials, revealing the potential applications and performance characteristics of each in optoelectronic devices. The findings offer a nuanced understanding of the intrinsic relationships between material properties, defect states, and photoelectric performance, thereby guiding the selection and optimization of channel layer materials for specific application requirements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.5c00152 | DOI Listing |
Langmuir
September 2025
Product & Process Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, 2629 HZ Delft, The Netherlands.
Noble metal nanoparticles (NPs), particularly platinum (Pt), are widely used in heterogeneous catalysis due to their exceptional activity. However, controlling their size and preventing sintering during synthesis remains a major challenge, especially when aiming for high dispersion and stability on supports such as graphene. Atomic layer deposition (ALD) has emerged as a promising method to address these issues, yet conventional processes often lead to broad particle size distributions (PSDs).
View Article and Find Full Text PDFJ Org Chem
September 2025
Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P R China.
The electrochemical trifluoromethylation/1,5-HAT of -cyanamide alkenes with CFSONa has been achieved to construct trifluoromethylated cyclic amidines and -acryloylpyrrolidin-2-one derivatives. This transformation was performed with readily available starting materials under mild conditions and required neither oxidants nor transition metal catalysts, exhibiting high atom economy.
View Article and Find Full Text PDFDiscov Nano
September 2025
Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Integrated Circuit, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China.
A cost-effective and large-scale method for synthesizing ZnCoO nanoflowers with surface oxygen vacancies as electrode materials for supercapacitors is presented. The existence of oxygen vacancies on the surface of the ZnCoO nanoflowers has been confirmed through X-ray photoelectron spectroscopy (XPS). The energy bands and density of states (DOS) of ZnCoO are examined using density functional theory, revealing that treatment with NaBH reduces the band gap of ZnCoO while increasing the DOS near the Fermi level compared to pristine ZnCoO.
View Article and Find Full Text PDFDiscov Nano
September 2025
RRU 709, Department of Clinical Pharmacology, Advanced Centre for Training, Research and Education in Cancer, Kharghar, Navi Mumbai, India.
In this study, we investigated the influence of ultrasonic frequency during ultrasound-assisted chemical bath deposition (UCBD) on the surface morphology and electrochemical performance of CoO:MnO@CoMnO composite flexible electrodes for supercapacitor applications. By systematically varying the ultrasonic frequency (1.0-2.
View Article and Find Full Text PDFMikrochim Acta
September 2025
Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 Changsheng West Road, Hengyang, 421001, Hunan, China.
We systematically evaluated the DNA adsorption and desorption efficiencies of several nanoparticles. Among them, titanium dioxide (TiO₂) nanoparticles (NPs), aluminum oxide (Al₂O₃) NPs, and zinc oxide (ZnO) NPs exhibited strong DNA-binding capacities under mild conditions. However, phosphate-mediated DNA displacement efficiencies varied considerably, with only TiO₂ NPs showing consistently superior performance.
View Article and Find Full Text PDF