Synthesis and Evaluation of Cytotoxic Activity of RuCp(II) Complexes Bearing (Iso)nicotinic Acid Based Ligands.

Pharmaceuticals (Basel)

Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background/objectives: Cancer remains one of the major challenges of our century. Organometallic ruthenium complexes are gaining recognition as a highly promising group of compounds in the development of cancer treatments.

Methods: Building on the auspicious results obtained for [Ru(η-CH)(PPh)(bipy)][CFSO] (TM34), our focus has shifted to examining the effects of incorporating bioactive ligands into the TM34 framework, particularly within the cyclopentadienyl ring.

Results: In this study, we report the synthesis and characterization of two new ruthenium(II) complexes with the general formula [Ru(η-CHCCH=R)(PPh)(bipy)][CFSO], where R represents a nicotinic acid derivative (NNHCO(py-3-yl)) (1) or an isoniazid derivative (NNHCO(py-4-yl)) (2). The complexes were fully characterized using a combination of spectroscopic techniques and computational analysis, revealing the presence of -hydrazone isomerism. Stability studies confirmed the robustness of both complexes in biological media, with compound 1 maintaining good stability in buffer solutions mimicking physiological (pH 7.4) and tumor-like (pH 6.8) environments. The cytotoxicity of the complexes was evaluated in vitro in several human cancer cell lines, namely melanoma (A375), alveolar adenocarcinoma (A549), epidermoid carcinoma (A431), and breast cancer (MDA-MB 231).

Conclusions: Both compounds exhibited moderate to high cytotoxic activity, with complex 1 showing a greater propensity to induce cell death, particularly in the A431 and MDA-MB 231 cell lines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768749PMC
http://dx.doi.org/10.3390/ph18010097DOI Listing

Publication Analysis

Top Keywords

cytotoxic activity
8
cell lines
8
complexes
6
synthesis evaluation
4
evaluation cytotoxic
4
activity rucpii
4
rucpii complexes
4
complexes bearing
4
bearing isonicotinic
4
isonicotinic acid
4

Similar Publications

Enantioselective Synthesis of Spirooxindole Derivatives through Lewis Acid-Catalyzed Michael Addition/Cyclization Cascade.

J Org Chem

September 2025

Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. of China.

A Mg(OTf)-catalyzed asymmetric Michael addition/cyclization cascade reaction between 3-isothiocyanato oxindoles and 2-arylidene-1,3-indanediones has been developed. This transformation provides an efficient and concise approach to biologically important bispiro[indanedione-oxindole-pyrrolidinyl]s under mild conditions in good to excellent yields (70-99% yields) with moderate to good stereoselectivities (up to 99% and >95:5 d.r.

View Article and Find Full Text PDF

Aims: The increasing antimicrobial resistance, particularly in Acinetobacter baumannii, complicates the treatment of infections, leading to higher morbidity, mortality, and economic costs. Herein, we aimed to determine the in vitro antimicrobial, synergistic, and antibiofilm activities of colistin (COL), meropenem, and ciprofloxacin antibiotics, and curcumin, punicalagin, geraniol (GER), and linalool (LIN) plant-active ingredients alone and in combination against 31 multidrug-resistant (MDR) A. baumannii clinical isolates.

View Article and Find Full Text PDF

Introduction: The white water lily (Nymphaea alba) is a traditional medicinal plant recognized for its diverse array of bioactive properties. However, its potential in wound healing remains largely unexplored. This study aimed to evaluate the phytochemical profile, cytotoxicity, and wound healing efficacy of Nymphaea alba flower extract (NAFE) using both in vitro and in vivo models, as well as computational network analysis.

View Article and Find Full Text PDF

Introduction: Leukemia and radiation-induced liver toxicity are significant health challenges requiring effective therapeutic strategies. This study aimed to evaluate the therapeutic efficacy and radiosensitizing effects of Diosgenin-loaded silver nanoparticles (Dio-AgNPs) in ENU-induced leukemic mice, with a focus on their dual role in mitigating leukemia progression and γ-irradiation-induced hepatotoxicity.

Methods: Dio-AgNPs were synthesized and characterized using TEM, UV-Vis spectroscopy, FT-IR spectroscopy, and encapsulation efficiency analysis.

View Article and Find Full Text PDF

Introduction: Chemotherapy remains essential despite advances in immunotherapy, radiotherapy, and biological therapy. However, the wide range of chemical drugs is limited by a narrow therapeutic index, low selectivity, and the development of resistance. In this regard, new high-efficiency drugs are in extremely high demand.

View Article and Find Full Text PDF