98%
921
2 minutes
20
Point-of-care (PoC) devices offer a promising solution for fast, portable, and easy-to-use diagnostics. These characteristics are particularly relevant in agrifood fields like viticulture where the early detection of plant stresses is crucial to crop yield. Microfluidics, with its low reagent volume requirements, is well-suited for such applications. Self-driven microfluidic devices, which rely on capillary forces for fluid motion, offer an attractive alternative by eliminating the need for external pumps and complex fluid control systems. However, traditional microfluidic prototyping materials like polydimethylsiloxane (PDMS) present challenges due to their hydrophobic nature. This paper presents the development of a reusable, portable, capillary-driven microfluidic platform based on a PDMS-PEG (polyethylene glycol) copolymer designed for the rapid low-cost detection of abscisic acid (ABA), a key biomarker for the onset of ripening of non-climacteric fruits and drought stress in vines. By employing passive fluid transport mechanisms, such as capillary-driven sequential flow, this platform enables precise biological and chemical screenings while maintaining portability and ease of use. A simplified field-ready sample processing method is used to prepare the grapes for analysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768484 | PMC |
http://dx.doi.org/10.3390/s25020411 | DOI Listing |
iScience
September 2025
Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
Arbuscular mycorrhizal fungi (AMF) play a crucial role in disease control by establishing symbiotic relationships with plant roots. AMF improve salinity tolerance in plants by regulating the Na/K ratio through selective ion transport and mediate osmotic regulation by inducing the accumulation of osmotic-compatible solutes such as glycine betaine and proline to enable plant cells to maintain water content and the metabolic balance. AMF can also activate antioxidant defense responses by stimulating enzymes that protect plant cells from harmful oxidation and pathological infections.
View Article and Find Full Text PDFAvocado () stands out as one of the most significant crops globally. Due to its abundance in essential nutrients and phytochemicals, its consumption and commercialization have notably surged in recent years. The interplay between genotype and environment profoundly influences fruit maturity dates and physicochemical attributes.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, Heilongjiang, China.
is the most widely cultivated high-protein forage crop globally. However, its cultivation in high-latitude and cold regions of China is significantly hindered by low-temperature stress, particularly impacting the root system, the primary functional tissue crucial for winter survival. The physiological and molecular mechanisms underlying the root system's adaptation and tolerance to low temperatures remain poorly understood.
View Article and Find Full Text PDFPlant Physiol Biochem
August 2025
School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China. Electronic address:
The PR10 (Pathogenesis-Related Protein 10) family plays a crucial role in plant defense and growth regulation, with unique hydrophobic cavities that bind various ligands, including phytohormones and alkaloids. Among them, Norcoclaurine Synthases (NCS) are key enzymes in benzylisoquinoline alkaloid (BIAs) biosynthesis, catalyzing the Pictet-Spengler reaction to form the precursor (S)-norcoclaurine. However, the evolutionary origins and functions of the PR10 family in BIA biosynthesis remain unclear.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
Department of Botany, Jamia Hamdard, New Delhi 110062, India. Electronic address:
Lanthanum (La), being one of the crucial rare earth elements (REEs), plays an explicit role in agriculture as fertilizer. Due to its hormetic response, it exhibits dualistic behaviour in Triticum aestivum (wheat) plants. Abscisic acid (ABA) is a key plant hormone regulating various physiological and metabolomic responses in plants, but the interaction between La and ABA remains unclear.
View Article and Find Full Text PDF