Regulation of Flavonoid Biosynthesis by the MYB-bHLH-WDR (MBW) Complex in Plants and Its Specific Features in Cereals.

Int J Mol Sci

Department of Cytology and Histology, Saint Petersburg State University, 7/9 Universitetskaya Embankment, 199034 Saint Petersburg, Russia.

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Flavonoids are a large group of secondary metabolites, which are responsible for pigmentation, signaling, protection from unfavorable environmental conditions, and other important functions, as well as providing numerous benefits for human health. Various stages of flavonoid biosynthesis are subject to complex regulation by three groups of transcription regulators-MYC-like bHLH, R2R3-MYB and WDR which form the MBW regulatory complex. We attempt to cover the main aspects of this intriguing regulatory system in plants, as well as to summarize information on their distinctive features in cereals. Published data revealed the following perspectives for further research: (1) In cereals, a large number of paralogs of MYC and MYB transcription factors are present, and their diversification has led to spatial and biochemical specialization, providing an opportunity to fine-tune the distribution and composition of flavonoid compounds; (2) Regulatory systems formed by MBW proteins in cereals possess distinctive features that are not yet fully understood and require further investigation; (3) Non-classical MB-EMSY-like complexes, WDR-independent MB complexes, and solely acting R2R3-MYB transcription factors are of particular interest for studying unique regulatory mechanisms in plants. More comprehensive understanding of flavonoid biosynthesis regulation will allow us to develop cereal varieties with the required flavonoid content and spatial distribution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765516PMC
http://dx.doi.org/10.3390/ijms26020734DOI Listing

Publication Analysis

Top Keywords

flavonoid biosynthesis
12
features cereals
8
distinctive features
8
transcription factors
8
regulation flavonoid
4
biosynthesis myb-bhlh-wdr
4
myb-bhlh-wdr mbw
4
mbw complex
4
complex plants
4
plants specific
4

Similar Publications

Specialized plant metabolism, particularly phenolic compound production, contributes significantly to the functioning and resilience of mountain ecosystems. Livestock grazing can influence phenolic production, with its effects varying depending on microclimatic factors and soil conditions. Despite the ecological significance of this process, the impact of livestock grazing on phenolic production in alpine plants remains insufficiently explored.

View Article and Find Full Text PDF

This comprehensive review examines the versatile applications and effects of Moringa oleifera across multiple fish species in aquaculture systems amid growing challenges of rising feed costs and antimicrobial resistance. M. oleifera, commonly called the Miracle tree, contains an exceptional nutritional profile with high protein content (22.

View Article and Find Full Text PDF

Oligomeric proanthocyanidins (OPCs), condensed tannins found plentiful in grape seeds and berries, have higher bioavailability and therapeutic benefits due to their low degree of polymerization. Recent evidence places OPCs as effective modulators of cancer stem cell (CSC) plasticity and tumor growth. Mechanistically, OPCs orchestrate multi-pathway inhibition by destabilizing Wnt/β-catenin, Notch, PI3K/Akt/mTOR, JAK/STAT3, and Hedgehog pathways, triggering β-catenin degradation, silencing stemness regulators (OCT4, NANOG, SOX2), and stimulating tumor-suppressive microRNAs (miR-200, miR-34a).

View Article and Find Full Text PDF

Effect of Metschnikowia pulcherrima and 24-epibrassinolide on grape quality preservation and Botrytis control during postharvest.

Plant Physiol Biochem

August 2025

College of Enology, Northwest A&F University, Yangling, China; Heyang Grape Experiment and Demonstration Station, Northwest A&F University, Heyang, 715300, China; Shaanxi Engineering Research Center for Viti Viniculture, 712100, Yangling, China. Electronic address:

Postharvest deterioration in table grapes, driven by fungal pathogens and oxidative damage, remains a critical concern. This study evaluated the synergistic potential of 24-epibrassinolide (EBR) and Metschnikowia pulcherrima (Y) in preserving the quality of Red Globe grapes. The combined treatment of EBR and Y (YBR) significantly enhanced phenolic biosynthesis, elevating flavonoids and anthocyanin by 27.

View Article and Find Full Text PDF

The flavonoid rutin protects against imidacloprid-induced osmotic and electric disruptions in Africanized honey bees.

PLoS One

September 2025

Departamento de Biología, Escuela de Ciencias e Ingeniería, Universidad del Rosario, Bogotá, Colombia.

Honey bees (Apis mellifera) are essential pollinators threatened by sublethal effects of pesticides such as imidacloprid, a widely used neonicotinoid that disrupts the central nervous system. However, many of the systemic effects are poorly understood, especially on the physiological homeostasis of the honey bee. We evaluated the effects of oral administration of imidacloprid and the flavonol rutin on the properties of extracellular fluid (ECF) in Apis mellifera.

View Article and Find Full Text PDF