Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Particulate matter (PM) exposure can reduce heart rate variability (HRV), a cardiovascular health marker. This study examines PM (aerodynamic diameters <1 μm), PM (≥1 μm and <2.5 μm), and PM (≥2.5 μm and <10 μm) effects on HRV in patients with environmental diseases as chronic disease groups and vulnerable populations as control groups. PM levels were measured indoors and outdoors for five days in 97 participants, with 24-h HRV monitoring via wearable devices. PM exposure was assessed by categorizing daily cumulative PM concentrations into higher and lower exposure days, while daily average PM concentrations were used for analysis. Results showed significant negative associations between exposure to single and mixtures of different PM metrics and HRV across all groups, particularly in chronic airway disease and higher air pollution exposed groups. These findings highlight that even lower PM levels may reduce HRV, suggesting a need for stricter standards to protect sensitive individuals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760931PMC
http://dx.doi.org/10.1038/s41746-024-01373-5DOI Listing

Publication Analysis

Top Keywords

particulate matter
8
heart rate
8
rate variability
8
association exposure
4
exposure particulate
4
matter heart
4
variability vulnerable
4
vulnerable susceptible
4
susceptible individuals
4
individuals particulate
4

Similar Publications

Background And Objectives: Pollen-food allergy syndrome (PFAS) is a frequent comorbidity in individuals with hay fever. Identifying risk factors and allergen clusters can aid targeted interventions and management strategies. Objective: This study characterizes PFAS in patients with hay fever and identifies associated risk factors using the mobile health platform, AllerSearch.

View Article and Find Full Text PDF

Influenza viruses can be aerosolized when slaughtering infected chickens, which increases the risk of zoonotic transmission. We conducted pilot experiments to measure the concentrations of airborne particles <2.5 μm during slaughtering and defeathering of chickens to help identify methods that can minimize workers' exposure to potentially hazardous aerosol particles.

View Article and Find Full Text PDF

Acute endocrine disrupting effect of fine particulate constituents on thyroid homeostasis: A multicenter cross-sectional study in China.

Ecotoxicol Environ Saf

September 2025

China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environm

New evidence has revealed ambient fine particulate matter < 2.5 μm (PM) may have endocrine disrupting effect, such as thyroid hormone disorder, while which PM constituents contributed to the effect was debatable. The study aimed to identify the specific PM constituents regarding to acute endocrine disrupting effect.

View Article and Find Full Text PDF

Assessment of particle-bound PFAS in ambient air from a coastal urban environment in South Florida.

J Hazard Mater

September 2025

Institute of Environment, Florida International University, 3000 NE 151st St., Biscayne Bay Campus, North Miami, FL 33181, USA; Department of Chemistry and Biochemistry. Florida International University, 11200 SW 8th Street, Modesto A. Maidique Campus, Miami, FL 33199, USA. Electronic address: nsoar

Per- and polyfluoroalkyl substances (PFAS) are man-made pollutants widely used in industrial and consumer products, known to pose significant health risks. While their occurrence in water, soil, and food has been extensively studied, limited research has focused on ambient air, particularly in the U.S.

View Article and Find Full Text PDF

Purpose: To investigate the short-term impact of exposure to smoke from vegetation burns on ocular surface symptoms and signs.

Methods: Woody bushfuels were burnt in an enclosed room (Flammability Laboratory, University of Tasmania, Australia) to generate particulate matter and monitored in real time (Dust Trak II). Eighteen participants (aged 20-63 years, 8 males and 10 females) fitted with respirators were seated 1.

View Article and Find Full Text PDF