98%
921
2 minutes
20
The number of metal-containing waste streams resulting from electronic end-of life products, metallurgical by-products, and mine tailings to name but a few, is increasing worldwide. In recent decades, the potential to exploit these waste streams as valuable secondary resources to meet the high demand of critical and economically important raw materials has become more prominent. In this review, fundamental principles of bio-based metal recovery technologies are discussed focusing on microbial metabolism-dependent and metabolism-independent mechanisms as sustainable alternatives to conventional chemical metal recovery methods. In contrast to previous reviews which have partially addressed this topic, a special focus will be given on how fundamental principles of bio-based recovery technologies can influence the selectivity and specificity of metal recovery. While conventional methods for metal recovery show benefits in terms of economic affordability, bio-based recovery technologies offer advantages in terms of efficiency and environmentally friendliness. Modifications and adaptations in the processes of biosorption, bioaccumulation and bioelectrochemical systems are highlighted, further emphasizing the application of metal-binding peptides and siderophores to increase selectivity in the recovery of metals. Single metal solutions or mixtures with a low complexity have been the focus of previous studies and reviews, but this does not reflect the nature of complex industrial effluents. Therefore, key challenges that arise when dealing with complex polymetallic solutions are addressed and the focus is set on optimizing bio-based technologies to recover metals efficiently and selectively from bio-leachates or liquid waste streams.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755047 | PMC |
http://dx.doi.org/10.3389/fbioe.2024.1528992 | DOI Listing |
Waste Manag Res
September 2025
School of Environmental Science and Engineering, Tongji University, Shanghai, PR China.
Waste three-way catalysts (TWCs) and waste LiCoO batteries represent critical environmental challenges due to hazardous components yet contain high-value resources, and their recycling has garnered widespread attention. We propose a novel 'waste-to-waste' synergistic recycling where spent LiCoO batteries reconstruct mineral phases of waste TWCs, enabling co-recovery of platinum group metals and Li/Co without traditional oxidants. However, the environmental performance of this process still requires further analysis.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
College of Polymer Science and Engineering, State Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu, 610065, P.R. China.
The metal-nitrogen chelated species, MN, have shown promise as efficient electrocatalysts for nitrate reduction, yet the symmetric arrangement of N atoms results in suboptimal adsorption affinity toward reaction substrates and intermediates. The current approaches to breaking the symmetry of MN suffer from inaccuracy and inhomogeneity because of the lack of strategies stemming from molecular design aspects. Herein, we report the construction of symmetry-broken MNO sites in coordination polymers via sequential coordination-covalent control in a one-pot reaction.
View Article and Find Full Text PDFMikrochim Acta
September 2025
Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Salmonella Typhimurium (S. Typhimurium) is one of the most common food-borne diseases, highlighted as the top food-borne bacterial pathogen in the world with a low infectious dose (1 CFU) and high mortality rate. It is commonly associated with numerous foods such as dairy products, protein sources (multiple types of meat, poultry, and eggs), and bakery products.
View Article and Find Full Text PDFMikrochim Acta
September 2025
Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province, 650500, China.
Iron-cerium co-doped carbon dots (Fe,Ce-CDs) were synthesized by one-step hydrothermal method using tartaric acid and L-tryptophan as ligands. Fe,Ce-CDs shows excellent peroxidase-like (POD) activity and nitrite (NO) can promote the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to its blue oxidation product (oxTMB) due to the formation of ∙NO free radical. NO further react with oxTMB to form a yellow color via diazotization resulting in the absorbance Change at 450 nm.
View Article and Find Full Text PDFLuminescence
September 2025
Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
A triphenyl-imidazole end-capped donor-acceptor type potential molecular probe 3 has been designed and synthesized. Probe 3 upon interaction with different classes of metal ions/anions and NPPs displayed high selectivity with CN anion (LOD = 20.42 nM) through fluorescence "turn-Off" response and a naked-eye sensitive visible color change.
View Article and Find Full Text PDF