98%
921
2 minutes
20
In the adult mammalian cochlea, hair cell loss is irreversible and causes deafness. The basic helix-loop transcription factor Atoh1 is essential for normal hair cell development in the embryonic ear. Over-expression of Atoh1 in the adult cochlea by gene therapy can convert supporting cells (cells that underlie hair cells) into a hair cell lineage. However, the regeneration outcomes can be inconsistent. Given that hair cell development is regulated by multiple signalling and transcriptional factors in a temporal and spatial manner, a more complex combinatorial approach targeting additional transcription factors may be required for efficient hair cell regeneration. There is evidence that epigenetic factors are responsible for the lack in regenerative capacity of the deaf adult cochlea. This study aimed to develop a combined gene therapy approach to reprogram both the genome and epigenome of supporting cells to improve the efficiency of hair cell regeneration. Adult Pou4f3-DTR mice were used in which the administration of diphtheria toxin was used to ablate hair cells whilst leaving supporting cells relatively intact. A single adeno-associated viral construct was used to express human Atoh1, Pou4f3 and short hairpin RNA against Kdm1a (regeneration gene therapy) at two weeks following partial or severe hair cell ablation. The average transduction of the inner supporting cells, as measured by the control AAV2.7m8-GFP vector in the deaf cochlea, was only 8 % while transduction in the outer sensory region was <1 %. At 4- and 6-weeks post-treatment the number of Myo+ hair cells in the control and regeneration gene therapy-treated mice were not significantly different. Of note, although both control and regeneration gene therapy treated cochleae contained supporting cells that co-expressed the hair cell marker Myo7a and the supporting cell marker Sox2, the regeneration gene therapy treated cochleae had significantly higher numbers of these cells (p < 0.05). Furthermore, among these treated cochleae, those that had more hair cell loss had a higher number of Myo7a positive supporting cells (R2=0.33, Pearson correlation analysis, p < 0.001). Overall, our results indicate that the adult cochlea possesses limited intrinsic spontaneous regenerative capacity, that can be further enhanced by genetic and epigenetic reprogramming.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.heares.2024.109170 | DOI Listing |
Clin Epigenetics
September 2025
Department of Psychiatry and Psychotherapy, Philipps University Marburg, Marburg, Germany.
Background: Work-related stress is a well-established contributor to mental health decline, particularly in the context of burnout, a state of prolonged exhaustion. Epigenetic clocks, which estimate biological age based on DNA methylation (DNAm) patterns, have been proposed as potential biomarkers of chronic stress and its impact on biological aging and health. However, their role in mediating the relationship between work-related stress, physiological stress markers, and burnout remains unclear.
View Article and Find Full Text PDFNeurotoxicology
September 2025
Department of Otolaryngology Head and Neck Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China. Electronic address:
Gadolinium-based contrast agents (GBCAs) are widely used in systemic magnetic resonance imaging (MRI) and can be employed in otology to evaluate endolymphatic hydrops in patients with Ménière's disease. Given the heavy metal properties of gadolinium and its tendency to deposit in tissues, it is essential to assess its ototoxic risk. We evaluated the ototoxicity of gadodiamide using in vitro and in vivo models.
View Article and Find Full Text PDFPLoS Biol
September 2025
National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
Morphogenetic information arises from a combination of genetically encoded cellular properties and emergent cellular behaviors. The spatio-temporal implementation of this information is critical to ensure robust, reproducible tissue shapes, yet the principles underlying its organization remain unknown. We investigated this principle using the mouse auditory epithelium, the organ of Corti (OC).
View Article and Find Full Text PDFJDS Commun
September 2025
Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706.
Homeostasis and thermoregulation depend on the interplay of the hair and skin. Maternal heat stress in late gestation triggers postnatal hair and skin adaptations in daughters and granddaughters. Herein, we investigated the transgenerational effects of late-gestation heat stress on the hair and skin of the great-granddaughters.
View Article and Find Full Text PDFJ Affect Disord
September 2025
The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China. Electronic address: