98%
921
2 minutes
20
People with mild cognitive impairment (MCI) carry a considerable risk of developing dementia. Studies have shown that female sex hormones have long-lasting neuroprotective and anti-aging properties, and the increased risk of MCI and AD is associated with the lack of estrogen during menopause. Previous studies have shown that Tiao Geng Decoction (TGD) may have antioxidant and anti apoptotic properties, which may prevent neurodegenerative diseases. However, whether TGD is effective in improving mild cognitive impairment due to postmenopausal estrogen deficiency and its potential pharmacological mechanisms remain unclear. The aim of this study was to investigate the possible pharmacological mechanisms of TGD in preventing postmenopausal MCI. We utilized RNA-seq technology to screen for differentially expressed genes (DEGs) and enrichment pathways in the hippocampal tissue of different groups of mice. Additionally, we adopted single-cell sequencing technology to study the cell types of Alzheimer's disease (AD) group and Normal Control (NC) group, the differential marker genes of each cell subgroup, and the GO enrichment analysis of each cell type. Both RNA sequencing and single-cell sequencing results showed a significant correlation between TGD and NF-κb pathway in improving mild cognitive impairment in postmenopausal women. The experimental verification results showed that the spatial learning and memory abilities of APP/PS1 model mice were weakened after ovariectomy, and the reproductive cycle on vaginal smears was in the interphase of diestrus. The levels of serum E2, and P-tau181 in mice were significantly down regulated, while the levels of brain tissue homogenate A β 42, IL-1 β, and IL-18 were significantly up-regulated, indicating successful modeling. Combining Western blotting, RT-qPCR, and transmission electron microscopy analyses, it was found that the low estrogen environment induced by oophorectomy can activate the NF-κb signaling pathway, activate the expression of NLRP3 inflammasome and A β secretase BACE1, and induce neuroinflammatory damage in hippocampal astrocytes. These results conform to the modeling characteristics of MCI. After TGD intervention, the spatial learning and memory abilities of MCI mice were significantly improved. The pharmacological validation results indicated that high concentration doses of TGD had a more significant effect on MCI. Subsequently, we used high concentration TGD (0.32 g/ml) as the traditional Chinese medicine group for further validation, protein blotting and RT-qPCR results indicated that TGD can effectively stimulate the secretion of ER α and ER β, inhibit the NF-κb pathway, downregulate BACE1, and inhibit the expression of NLRP3 inflammasome related proteins. In addition, the immunofluorescence results of hippocampal astrocytes showed that TGD can effectively facilitate the expression of AQP1 and significantly lower the sedimentation of A β compared with the model group. Our research suggests that there is a high correlation between a low estrogen environment and the occurrence and development of MCI. TGD may regulate the ERs/NF - κ b/AQP1 signaling pathway, promote estrogen secretion, activate AQP1, reduce A β deposition, reverse MCI neuroinflammatory injury, improve mild cognitive impairment, and prevent the occurrence of AD. This study revealed for the first time that TGD may be a potential new alternative drug for preventing and improving menopausal MCI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phymed.2025.156391 | DOI Listing |
JAMA Netw Open
September 2025
Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
Importance: Exposure to inflammation from chorioamnionitis places the fetus at higher risk of premature birth and may increase the risk of neurodevelopmental impairments, though the evidence for the latter is mixed.
Objective: To evaluate whether moderate to severe histologic chorioamnionitis (HCA) is directly associated with adverse motor performance, independent of the indirect mediating effects of premature birth.
Design, Setting, And Participants: This prospective, population-based cohort study recruited participants between September 16, 2016, and November 19, 2019, from referral and nonreferral neonatal intensive care units of 5 southwestern Ohio hospitals.
Radiology
September 2025
Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Md.
Background Elevated brain iron is a potential marker for neurodegeneration, but its role in predicting onset of mild cognitive impairment (MCI) and prospective cognitive trajectories remains unclear. Purpose To investigate how brain iron and amyloid-β (Aβ) levels, measured using quantitative susceptibility mapping (QSM) MRI and PET, help predict MCI onset and cognitive decline. Materials and Methods In this prospective study conducted between January 2015 and November 2022, cognitively unimpaired older adults underwent baseline QSM MRI.
View Article and Find Full Text PDFRadiology
September 2025
Boston University, VA Boston Health Care System, Boston Medical Center, One Boston Medical Center Place, Boston, MA 02118.
J Korean Med Sci
September 2025
Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea.
Background: Neuropsychological assessments are critical to cognitive care, but are time-consuming and often of variable quality. Automated tools, such as ReadSmart4U, improve report quality and consistency while meeting the growing demand for cognitive assessments.
Methods: This retrospective cross-sectional study analysed 150 neuropsychological assessments stratified by cognitive diagnosis (normal cognition, mild cognitive impairment and Alzheimer's disease) from the Clinical Data Warehouse of a university-affiliated referral hospital (2010-2020).
Alzheimers Dement
September 2025
Boston University Alzheimer's Disease Research Center and BU CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA.
We describe the rationale, methodology, and design of the Boston University Alzheimer's Disease Research Center (BU ADRC) Clinical Core (CC). The CC characterizes a longitudinal cohort of participants with/without brain trauma to characterize the clinical presentation, biomarker profiles, and risk factors of post-traumatic Alzheimer's disease (AD) and AD-related dementias (ADRD), including chronic traumatic encephalopathy (CTE). Participants complete assessments of traumatic brain injury (TBI) and repetitive head impacts (RHIs); annual Uniform Data Set (UDS) and supplementary evaluations; digital phenotyping; annual blood draw; magnetic resonance imaging (MRI) and lumbar puncture every 3 years; electroencephalogram (EEG); and amyloid and/or tau positron emission tomography (PET) on a subset.
View Article and Find Full Text PDF