Spin State Modulation with Oxygen Vacancy Orientates C/N Intermediates for Urea Electrosynthesis of Ultrahigh Efficiency.

Adv Mater

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China.

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The co-electrolysis of CO and NO to synthesize urea has become an effective pathway to alternate the conventional Bosch-Meiser process, while the complexity of C-/N-containing intermediates for C-N coupling results in the urea electrosynthesis of unsatisfactory efficiency. In this work, an electronic spin state modulation maneuver with oxygen vacancies (Ov) is unveiled to effectively meliorate the oriented generation of key intermediates NH and CO for C-N coupling, furnishing urea in ultrahigh yield of 2175.47 µg mg h and Faraday efficiency of 70.1%. Mechanistic studies expound that Ov can induce the conversion of the high-spin state Ni (t e ) of Ni@CeO to the low-spin state Ni (t e ), which markedly enhances the hybridization degree of the Ni 3d and the N 2p orbitals of NO, facilitating the selective formation of NH. Notably, the in situ generated NH intermediates can serve as a localized proton donor to promote the electroreduction of CO on the adjacent site Ce-O to exclusively afford CO, followed by C-N coupling of each other to efficiently synthesize urea. The strategy of tailored switching of the active site spin state provides a reliable reference to rectify the electronic structure of electrocatalysts for directional CO valorization.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202418828DOI Listing

Publication Analysis

Top Keywords

spin state
12
c-n coupling
12
state modulation
8
urea electrosynthesis
8
synthesize urea
8
intermediates c-n
8
urea
5
modulation oxygen
4
oxygen vacancy
4
vacancy orientates
4

Similar Publications

Beyond Fixed-Size Skyrmions in Nanodots: Switchable Multistability with Ferromagnetic Rings.

Nano Lett

September 2025

Depto. Polimeros y Materiales Avanzados: Fisica, Quimica y Tecnologia, Universidad del País Vasco, UPV/EHU, 20018 San Sebastian, Spain.

We demonstrate a novel approach to controlling and stabilizing magnetic skyrmions in ultrathin multilayer nanostructures through spatially engineered magnetostatic fields generated by ferromagnetic nanorings. Using analytical modeling and micromagnetic simulations, we show that the stray fields from a Co/Pd ferromagnetic ring with out-of-plane magnetic anisotropy significantly enhance the Néel-type skyrmion stability in an Ir/Co/Pt nanodot, even stabilizing the skyrmion in the absence of Dzyaloshinskii-Moriya interactions. We demonstrate precise control over the skyrmion size and stability.

View Article and Find Full Text PDF

Strain-induced half-metallicity and giant Wiedemann-Franz violation in monolayer NiI.

Phys Chem Chem Phys

September 2025

Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Casilla 110V, Valparaíso, Chile.

Reversible control of spin-dependent thermoelectricity mechanical strain provides a platform for next-generation energy harvesting and thermal logic circuits. Using first-principles and Boltzmann transport calculations, we demonstrate that monolayer NiI undergoes a strain-driven semiconductor-to-half-metal transition, enabled by the selective closure of its spin-down band gap while preserving a robust ferromagnetic ground state. Remarkably, this transition is accompanied by a giant, non-monotonic violation of the Wiedemann-Franz law, with the Lorenz number enhanced up to 7.

View Article and Find Full Text PDF

Ni-Mediated High-Spin Iron(III) for Boosting Electrocatalytic NO to Oxime Conversion.

Angew Chem Int Ed Engl

September 2025

Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, LIFM, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, China.

Oximes serve as indispensable intermediates in synthetic chemistry, owing to their distinctive C═N─OH structure, conferring highly versatile reactivity. Synthesis of oxime via the electrochemical method has potential advantages, accompanied by the upgrading of industrialization. Herein, we propose a novel strategy by introducing nickel (Ni) mediation to obtain high-spin iron (Fe)(III) in phthalocyanine structure for synthesizing glyoxylate oxime via electrocatalytic nitric oxide (NO) coupling with keto acid.

View Article and Find Full Text PDF

Purpose: This study sought to determine the intrasession repeatability of the diffusion-weighted (DW) arterial spin labeling (ASL) sequence at different postlabel delays (PLDs).

Methods: We first performed numerical simulations to study the accuracy of the two-compartment water exchange rate (Kw) fitting model with added Gaussian noise for DW PLDs at 1500, 1800, and 2100 ms. Ten young, healthy participants then underwent a structural T scan and two intrasession in vivo DW ASL scans at each PLD on a 3T MRI.

View Article and Find Full Text PDF

Asymmetrically Coordinated CoN Sites with Enhanced Oxidase-like Activity for Dual-Mode Colorimetric Sensing of Nitrite.

ACS Appl Mater Interfaces

September 2025

State Key Laboratory of Advanced Materials for Intelligent Sensing & Key Laboratory of Organic Integrated Circuit Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science & Institute of Molecular Aggregation Science, Tianjin Univ

The design of efficient and user-friendly methods for nitrite detection is of great significance owing to its critical role in food safety and environmental protection. Herein, we report a novel cobalt single-atom nanozyme (CoN SA) featuring a highly asymmetric CoN coordination environment. This structural configuration stabilizes high-spin Co species and significantly enhances the oxidase-like activity.

View Article and Find Full Text PDF