A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

High-dimensional multiple imputation (HDMI) for partially observed confounders including natural language processing-derived auxiliary covariates. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Multiple imputation (MI) models can be improved with auxiliary covariates (AC), but their performance in high-dimensional data remains unclear. We aimed to develop and compare high-dimensional MI (HDMI) methods using structured and natural language processing (NLP)-derived AC in studies with partially observed confounders. We conducted a plasmode simulation with acute kidney injury as outcome and simulated 100 cohorts with a null treatment effect, incorporating creatinine labs, atrial fibrillation (AFib), and other investigator-derived confounders in the outcome generation. Missingness was imposed on creatinine based on creatinine itself and AFib. Different HDMI candidate AC were created using structured and NLP-derived features and we mimicked scenarios where AFib was unobserved by omitting it from all analyses. Using LASSO, we selected HDMI covariates for MI and propensity score models. The treatment effect was estimated after propensity score matching in MI datasets, and HDMI methods were compared to baseline imputation and complete case analysis. HDMI using claims data showed the lowest bias (0.072). Combining claims and sentence embeddings led to an improvement in the efficiency with a root-mean-squared-error of 0.173 and 94% coverage. NLP-derived AC alone did not outperform baseline MI. HDMI approaches may decrease bias in studies where confounder missingness depends on unobserved factors.

Download full-text PDF

Source
http://dx.doi.org/10.1093/aje/kwaf017DOI Listing

Publication Analysis

Top Keywords

multiple imputation
8
partially observed
8
observed confounders
8
natural language
8
auxiliary covariates
8
hdmi methods
8
propensity score
8
hdmi
7
high-dimensional multiple
4
imputation hdmi
4

Similar Publications