Toll/interleukin-1 receptor-only genes contribute to immune responses in maize.

Plant Physiol

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao 266237, China.

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Proteins with Toll/interleukin-1 receptor (TIR) domains are widely distributed in both prokaryotes and eukaryotes, serving as essential components of immune signaling. Although monocots lack the major TIR nucleotide-binding leucine-rich repeat-type (TNL) immune receptors, they possess a small number of TIR-only proteins, the function of which remains largely unknown. In the monocot maize (Zea mays), there are 3 conserved TIR-only genes in the reference genome, namely ZmTIR1 to ZmTIR3. A genome-wide scan for TIR genes and comparative analysis revealed that these genes exhibit low sequence diversity and do not show copy number variation among 26 diverse inbred lines. ZmTIR1 and ZmTIR3, but not ZmTIR2, specifically trigger cell death and defense gene expression when overexpressed in Nicotiana benthamiana leaves. These responses depend on the critical glutamic acid and cysteine residues predicted to be essential for TIR-mediated NADase and 2',3'-cAMP/cGMP synthetase activity, respectively, as well as the key TIR downstream regulator Enhanced Disease Susceptibility 1 (EDS1). Overexpression of ZmTIR3 in N. benthamiana produces signaling molecules, including 2'cADPR, 2',3'-cAMP, and 2',3'-cGMP, a process that requires the enzymatic glutamic acid and cysteine residues of ZmTIR3. ZmTIR expression in maize is barely detectable under normal conditions but is substantially induced by different pathogens. Importantly, the maize Zmtir3 knockout mutant exhibits enhanced susceptibility to the fungal pathogen Cochliobolus heterostrophus, highlighting the role of ZmTIR3 in maize immunity. Overall, our results unveil the function of the maize ZmTIRs. We propose that the pathogen-inducible ZmTIRs play an important role in maize immunity, likely through their enzymatic activity and via EDS1-mediated signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1093/plphys/kiaf030DOI Listing

Publication Analysis

Top Keywords

zmtir1 zmtir3
8
glutamic acid
8
acid cysteine
8
cysteine residues
8
maize immunity
8
maize
7
zmtir3
6
toll/interleukin-1 receptor-only
4
genes
4
receptor-only genes
4

Similar Publications

Toll/interleukin-1 receptor-only genes contribute to immune responses in maize.

Plant Physiol

February 2025

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao 266237, China.

Proteins with Toll/interleukin-1 receptor (TIR) domains are widely distributed in both prokaryotes and eukaryotes, serving as essential components of immune signaling. Although monocots lack the major TIR nucleotide-binding leucine-rich repeat-type (TNL) immune receptors, they possess a small number of TIR-only proteins, the function of which remains largely unknown. In the monocot maize (Zea mays), there are 3 conserved TIR-only genes in the reference genome, namely ZmTIR1 to ZmTIR3.

View Article and Find Full Text PDF